🗊Презентация The binomial model for option pricing

Категория: Математика
Нажмите для полного просмотра!
The binomial model for option pricing, слайд №1The binomial model for option pricing, слайд №2The binomial model for option pricing, слайд №3The binomial model for option pricing, слайд №4The binomial model for option pricing, слайд №5The binomial model for option pricing, слайд №6The binomial model for option pricing, слайд №7The binomial model for option pricing, слайд №8The binomial model for option pricing, слайд №9The binomial model for option pricing, слайд №10The binomial model for option pricing, слайд №11The binomial model for option pricing, слайд №12The binomial model for option pricing, слайд №13The binomial model for option pricing, слайд №14The binomial model for option pricing, слайд №15The binomial model for option pricing, слайд №16The binomial model for option pricing, слайд №17The binomial model for option pricing, слайд №18The binomial model for option pricing, слайд №19The binomial model for option pricing, слайд №20The binomial model for option pricing, слайд №21The binomial model for option pricing, слайд №22The binomial model for option pricing, слайд №23The binomial model for option pricing, слайд №24The binomial model for option pricing, слайд №25The binomial model for option pricing, слайд №26The binomial model for option pricing, слайд №27

Вы можете ознакомиться и скачать презентацию на тему The binomial model for option pricing. Доклад-сообщение содержит 27 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Option Pricing:
The Multi Period Binomial Model
Henrik Jönsson
Mälardalen University
Sweden
Описание слайда:
Option Pricing: The Multi Period Binomial Model Henrik Jönsson Mälardalen University Sweden

Слайд 2





Contents 
European Call Option
Geometric Brownian Motion
Black-Scholes Formula
Multi period Binomial Model
GBM as a limit
Black-Scholes Formula as a limit
Описание слайда:
Contents European Call Option Geometric Brownian Motion Black-Scholes Formula Multi period Binomial Model GBM as a limit Black-Scholes Formula as a limit

Слайд 3





European Call Option
C - Option Price
K - Strike price
T - Expiration day
Exercise only at T
Payoff function, e.g.
Описание слайда:
European Call Option C - Option Price K - Strike price T - Expiration day Exercise only at T Payoff function, e.g.

Слайд 4





Geometric Brownian Motion
    S(y), 0y<t, follows a geometric Brownian motion if
           independent of all prices up to time y
Описание слайда:
Geometric Brownian Motion S(y), 0y<t, follows a geometric Brownian motion if independent of all prices up to time y

Слайд 5





Black-Scholes Formula
The price at time zero of a European call
option (non-dividend-paying stock):
where
Описание слайда:
Black-Scholes Formula The price at time zero of a European call option (non-dividend-paying stock): where

Слайд 6





The Multi Period Binomial Model
Описание слайда:
The Multi Period Binomial Model

Слайд 7





The Multi Period Binomial Model
Let 
Let (X1, X2,…, Xn) be the vector describing the outcome after n steps.
Find the set of probabilities               P{X1=x1, X2 =x2,…, Xn =xn},                xi=0,1, i=1,…,n,                                                  such that there is no arbitrage opportunity.
Описание слайда:
The Multi Period Binomial Model Let Let (X1, X2,…, Xn) be the vector describing the outcome after n steps. Find the set of probabilities P{X1=x1, X2 =x2,…, Xn =xn}, xi=0,1, i=1,…,n, such that there is no arbitrage opportunity.

Слайд 8





The Multi Period Binomial Model
Choose an arbitrary vector (1, 2, …, n-1) 
If A={X1= 1, X2= 2, …, Xn-1= n-1} is true buy one unit of stock and sell it back at moment n
Probability that the stock is purchased                 qn-1=P{X1= 1, X2= 2, …, Xn-1= n-1} 
Probability that the stock goes up                       pn= P{Xn=1| X1= 1, …, Xn-1= n-1}
Описание слайда:
The Multi Period Binomial Model Choose an arbitrary vector (1, 2, …, n-1) If A={X1= 1, X2= 2, …, Xn-1= n-1} is true buy one unit of stock and sell it back at moment n Probability that the stock is purchased qn-1=P{X1= 1, X2= 2, …, Xn-1= n-1} Probability that the stock goes up pn= P{Xn=1| X1= 1, …, Xn-1= n-1}

Слайд 9





The Multi Period Binomial Model
Описание слайда:
The Multi Period Binomial Model

Слайд 10





The Multi Period Binomial Model
Expected gain =
 
No arbitrage opportunity implies
Описание слайда:
The Multi Period Binomial Model Expected gain = No arbitrage opportunity implies

Слайд 11





The Multi Period Binomial Model
(1, 2, …, n-1) arbitrary vector
No arbitrage opportunity 
                         
Описание слайда:
The Multi Period Binomial Model (1, 2, …, n-1) arbitrary vector No arbitrage opportunity 

Слайд 12





The Multi Period Binomial Model
Limitations:
Two outcomes only 
The same increase & decrease for all time periods
The same probabilities
Описание слайда:
The Multi Period Binomial Model Limitations: Two outcomes only The same increase & decrease for all time periods The same probabilities

Слайд 13





Geometric Brownian Motion as a Limit
The Binomial process:
Описание слайда:
Geometric Brownian Motion as a Limit The Binomial process:

Слайд 14


The binomial model for option pricing, слайд №14
Описание слайда:

Слайд 15





GBM as a limit
Let 
and                 , Y ~ Bin(n,p)
Описание слайда:
GBM as a limit Let and , Y ~ Bin(n,p)

Слайд 16





GBM as a Limit
The stock price after n periods
where
Описание слайда:
GBM as a Limit The stock price after n periods where

Слайд 17





GBM as a Limit
Taylor expansion 
gives
Описание слайда:
GBM as a Limit Taylor expansion gives

Слайд 18





GBM as a limit
Expected value of W
Описание слайда:
GBM as a limit Expected value of W

Слайд 19





GBM as a limit
By Central Limit Theorem
Описание слайда:
GBM as a limit By Central Limit Theorem

Слайд 20





GBM as a limit
	The multi period Binomial model becomes geometric Brownian motion when n → ∞, since
                           are independent
Описание слайда:
GBM as a limit The multi period Binomial model becomes geometric Brownian motion when n → ∞, since are independent

Слайд 21





B-S Formula as a limit
Let                   , Y ~ Bin(n,p)
The value of the option after n periods = 
    
    
    where S(t)= uY dn-Y S(0)
Описание слайда:
B-S Formula as a limit Let , Y ~ Bin(n,p) The value of the option after n periods = where S(t)= uY dn-Y S(0)

Слайд 22





B-S formula as a limit
The unique non-arbitrage option price
As n → ∞
Описание слайда:
B-S formula as a limit The unique non-arbitrage option price As n → ∞

Слайд 23





B-S formula as a limit
where X~N(0,1) and
Описание слайда:
B-S formula as a limit where X~N(0,1) and

Слайд 24





B-S formula as a limit
Описание слайда:
B-S formula as a limit

Слайд 25





B-S formula as a limit
Описание слайда:
B-S formula as a limit

Слайд 26





B-S formula as a limit
Описание слайда:
B-S formula as a limit

Слайд 27





B-S formula as a limit
Описание слайда:
B-S formula as a limit



Похожие презентации
Mypresentation.ru
Загрузить презентацию