🗊Презентация Trigonometry. Angles add to 180°

Категория: Математика
Нажмите для полного просмотра!
Trigonometry. Angles add to 180°, слайд №1Trigonometry. Angles add to 180°, слайд №2Trigonometry. Angles add to 180°, слайд №3Trigonometry. Angles add to 180°, слайд №4Trigonometry. Angles add to 180°, слайд №5Trigonometry. Angles add to 180°, слайд №6Trigonometry. Angles add to 180°, слайд №7Trigonometry. Angles add to 180°, слайд №8Trigonometry. Angles add to 180°, слайд №9Trigonometry. Angles add to 180°, слайд №10Trigonometry. Angles add to 180°, слайд №11Trigonometry. Angles add to 180°, слайд №12Trigonometry. Angles add to 180°, слайд №13

Вы можете ознакомиться и скачать презентацию на тему Trigonometry. Angles add to 180°. Доклад-сообщение содержит 13 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Trigonometry
Описание слайда:
Trigonometry

Слайд 2





Angles add to 180°
The angles of a triangle always add up to 180°
Описание слайда:
Angles add to 180° The angles of a triangle always add up to 180°

Слайд 3





Right triangles
We only care about right triangles
A right triangle is one in which one of the angles is 90°
Here’s a right triangle:
Описание слайда:
Right triangles We only care about right triangles A right triangle is one in which one of the angles is 90° Here’s a right triangle:

Слайд 4





Example.
Solve the equations: 
a) cos (x / 5) = 1 
Decision: A) This time we proceed directly to the calculation of the roots of the equation at once: x / 5 = ± arccos (1) + 2πk. 
Then x / 5 = πk => x = 5πk The answer is: x = 5πk, where k is an integer.
Описание слайда:
Example. Solve the equations: a) cos (x / 5) = 1 Decision: A) This time we proceed directly to the calculation of the roots of the equation at once: x / 5 = ± arccos (1) + 2πk. Then x / 5 = πk => x = 5πk The answer is: x = 5πk, where k is an integer.

Слайд 5





The Pythagorean Theorem
If you square the length of the two shorter sides and add them, you get the square of the length of the hypotenuse

adj2 + opp2 = hyp2
Описание слайда:
The Pythagorean Theorem If you square the length of the two shorter sides and add them, you get the square of the length of the hypotenuse adj2 + opp2 = hyp2

Слайд 6





5-12-13
There are few triangles with integer sides that satisfy the Pythagorean formula
3-4-5 and its
multiples (6-8-10, etc.)
are the best known
5-12-13 and its multiples form another set
Описание слайда:
5-12-13 There are few triangles with integer sides that satisfy the Pythagorean formula 3-4-5 and its multiples (6-8-10, etc.) are the best known 5-12-13 and its multiples form another set

Слайд 7





Ratios
Since a triangle has three sides, there are six ways to divide the lengths of the sides
Each of these six ratios has a name (and an abbreviation)
Three ratios are most used:
sine = sin = opp / hyp
cosine = cos = adj / hyp
tangent = tan = opp / adj
The other three ratios are redundant with these and can be ignored
Описание слайда:
Ratios Since a triangle has three sides, there are six ways to divide the lengths of the sides Each of these six ratios has a name (and an abbreviation) Three ratios are most used: sine = sin = opp / hyp cosine = cos = adj / hyp tangent = tan = opp / adj The other three ratios are redundant with these and can be ignored

Слайд 8





Example.
Solve the equations: 
cos (4x) = √2 / 2. 
And find all the roots on the interval [0; Π]. 
Decision: Let us solve our equation in general form: 4x = ± arccos (√2 ​​/ 2) + 2πk 4x = ± π / 4 + 2πk;
 X = ± π / 16 + πk / 2; 
Now let's see what roots get into our segment.
Описание слайда:
Example. Solve the equations: cos (4x) = √2 / 2. And find all the roots on the interval [0; Π]. Decision: Let us solve our equation in general form: 4x = ± arccos (√2 ​​/ 2) + 2πk 4x = ± π / 4 + 2πk; X = ± π / 16 + πk / 2; Now let's see what roots get into our segment.

Слайд 9





Using the ratios
With these functions, if you know an angle (in addition to the right angle) and the length of a side, you can compute all other angles and lengths of sides
Описание слайда:
Using the ratios With these functions, if you know an angle (in addition to the right angle) and the length of a side, you can compute all other angles and lengths of sides

Слайд 10






Solve equations:
а) cos(x/5)=1 
The answer is: x = 5πk, where k is an integer.
Описание слайда:
Solve equations: а) cos(x/5)=1 The answer is: x = 5πk, where k is an integer.

Слайд 11






Decision: A) This time we proceed directly to the calculation of the roots of the equation at once:

Decision: A) This time we proceed directly to the calculation of the roots of the equation at once:
 x / 5 = ± arccos (1) + 2πk. Then x / 5 = πk => x = 5πk The answer is: x = 5πk, where k is an integer.
Описание слайда:
Decision: A) This time we proceed directly to the calculation of the roots of the equation at once: Decision: A) This time we proceed directly to the calculation of the roots of the equation at once: x / 5 = ± arccos (1) + 2πk. Then x / 5 = πk => x = 5πk The answer is: x = 5πk, where k is an integer.

Слайд 12





The hard part
If you understood this lecture, you’re in great shape for doing all kinds of things with basic graphics
Here’s the part I’ve always found the hardest:
Memorizing the names of the ratios

sin = opp / hyp
cos = adj / hyp
tan = opp / adj
Описание слайда:
The hard part If you understood this lecture, you’re in great shape for doing all kinds of things with basic graphics Here’s the part I’ve always found the hardest: Memorizing the names of the ratios sin = opp / hyp cos = adj / hyp tan = opp / adj

Слайд 13





The End
Описание слайда:
The End



Похожие презентации
Mypresentation.ru
Загрузить презентацию