🗊Презентация Алгебраические дроби. Сокращение алгебраических дробей

Категория: Математика
Нажмите для полного просмотра!
Алгебраические дроби. Сокращение алгебраических дробей, слайд №1Алгебраические дроби. Сокращение алгебраических дробей, слайд №2Алгебраические дроби. Сокращение алгебраических дробей, слайд №3Алгебраические дроби. Сокращение алгебраических дробей, слайд №4Алгебраические дроби. Сокращение алгебраических дробей, слайд №5Алгебраические дроби. Сокращение алгебраических дробей, слайд №6Алгебраические дроби. Сокращение алгебраических дробей, слайд №7Алгебраические дроби. Сокращение алгебраических дробей, слайд №8Алгебраические дроби. Сокращение алгебраических дробей, слайд №9Алгебраические дроби. Сокращение алгебраических дробей, слайд №10Алгебраические дроби. Сокращение алгебраических дробей, слайд №11Алгебраические дроби. Сокращение алгебраических дробей, слайд №12Алгебраические дроби. Сокращение алгебраических дробей, слайд №13Алгебраические дроби. Сокращение алгебраических дробей, слайд №14Алгебраические дроби. Сокращение алгебраических дробей, слайд №15

Вы можете ознакомиться и скачать презентацию на тему Алгебраические дроби. Сокращение алгебраических дробей. Доклад-сообщение содержит 15 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Алгебраические дроби
Сокращение алгебраических дробей
Описание слайда:
Алгебраические дроби Сокращение алгебраических дробей

Слайд 2






Преобразуйте выражение в многочлен стандартного вида:
а)( х + 2)(х + 3)
(а – 2)(а – 3)
Сократите дроби:
а)
Описание слайда:
Преобразуйте выражение в многочлен стандартного вида: а)( х + 2)(х + 3) (а – 2)(а – 3) Сократите дроби: а)

Слайд 3





1. Разложите на множители:
    		
  
  
  
               .
Описание слайда:
1. Разложите на множители: .

Слайд 4





Найдите ошибки:
Описание слайда:
Найдите ошибки:

Слайд 5


Алгебраические дроби. Сокращение алгебраических дробей, слайд №5
Описание слайда:

Слайд 6





Теория:

Алгебраической дробью называют отношение двух  многочленов Р и Q,
 т.е.  ,  где Р- числитель, Q- знаменатель 
алгебраической дроби.
Например,  ,    ,    ,
Описание слайда:
Теория: Алгебраической дробью называют отношение двух  многочленов Р и Q,  т.е.  , где Р- числитель, Q- знаменатель  алгебраической дроби. Например, , , ,

Слайд 7







Сократить дробь – это значит, разделить одновременно числитель и знаменатель дроби на их общий множитель, одно и то же отличное от нуля число.
Обрати внимание!
Сначала надо разложить на множители числитель и знаменатель дроби.
 =
= =
=
Описание слайда:
Сократить дробь – это значит, разделить одновременно числитель и знаменатель дроби на их общий множитель, одно и то же отличное от нуля число. Обрати внимание! Сначала надо разложить на множители числитель и знаменатель дроби. = = = =

Слайд 8






Пример:
1. Задание. Разделить одночлен 49c3d5 на одночлен 7cd2
Решение: Вместо   записи 49c3d5:7cd2 используем дробную черту :
49c3d5:7c=, т.к. c:d и  одно и тоже.
=⋅ ⋅ =7c2d3.
Описание слайда:
Пример: 1. Задание. Разделить одночлен 49c3d5 на одночлен 7cd2 Решение: Вместо   записи 49c3d5:7cd2 используем дробную черту : 49c3d5:7c=, т.к. c:d и  одно и тоже. =⋅ ⋅ =7c2d3.

Слайд 9


Алгебраические дроби. Сокращение алгебраических дробей, слайд №9
Описание слайда:

Слайд 10





2. Сократите дроби  (письменно)
а)  		              
б)   	
в)  			
 г)
Описание слайда:
2. Сократите дроби (письменно) а) б) в) г)

Слайд 11





3. Найдите значение алгебраической дроби, предварительно сократив ее:
                                            при х=10,
                     х=0,
                     х=5,
                     х=2.
Всегда ли это возможно?

Когда нет?
Описание слайда:
3. Найдите значение алгебраической дроби, предварительно сократив ее: при х=10, х=0, х=5, х=2. Всегда ли это возможно? Когда нет?

Слайд 12






Запомним !

Буквы, входящие в алгебраическую дробь, могут принимать лишь допустимые значения, то есть такие значения, при которых знаменатель дроби 
    не равен нулю!!!
Пример: для дроби   допустимы все значения а, кроме а = - 2
Описание слайда:
Запомним ! Буквы, входящие в алгебраическую дробь, могут принимать лишь допустимые значения, то есть такие значения, при которых знаменатель дроби не равен нулю!!! Пример: для дроби допустимы все значения а, кроме а = - 2

Слайд 13


Алгебраические дроби. Сокращение алгебраических дробей, слайд №13
Описание слайда:

Слайд 14





Основное свойство дроби
 , где   0
Примеры использования основного свойства дроби:
Привести дробь  к знаменателю 
 =  =   
Прокомментируйте, пожалуйста, приведённые действия.
Описание слайда:
Основное свойство дроби , где 0 Примеры использования основного свойства дроби: Привести дробь к знаменателю = = Прокомментируйте, пожалуйста, приведённые действия.

Слайд 15





Анализ работы, подводим итоги:
Что нового вы узнали на уроке?
Что повторили?
Что обобщили?
Что показалось простым?
А что было сложным?
В чем вы испытывали трудности?
К какому выводу вы пришли?
Описание слайда:
Анализ работы, подводим итоги: Что нового вы узнали на уроке? Что повторили? Что обобщили? Что показалось простым? А что было сложным? В чем вы испытывали трудности? К какому выводу вы пришли?



Похожие презентации
Mypresentation.ru
Загрузить презентацию