🗊Презентация Базовые компоненты эконометрики

Категория: Математика
Нажмите для полного просмотра!
Базовые компоненты эконометрики, слайд №1Базовые компоненты эконометрики, слайд №2Базовые компоненты эконометрики, слайд №3Базовые компоненты эконометрики, слайд №4Базовые компоненты эконометрики, слайд №5Базовые компоненты эконометрики, слайд №6Базовые компоненты эконометрики, слайд №7Базовые компоненты эконометрики, слайд №8Базовые компоненты эконометрики, слайд №9Базовые компоненты эконометрики, слайд №10Базовые компоненты эконометрики, слайд №11Базовые компоненты эконометрики, слайд №12Базовые компоненты эконометрики, слайд №13Базовые компоненты эконометрики, слайд №14Базовые компоненты эконометрики, слайд №15Базовые компоненты эконометрики, слайд №16Базовые компоненты эконометрики, слайд №17Базовые компоненты эконометрики, слайд №18Базовые компоненты эконометрики, слайд №19Базовые компоненты эконометрики, слайд №20Базовые компоненты эконометрики, слайд №21Базовые компоненты эконометрики, слайд №22Базовые компоненты эконометрики, слайд №23Базовые компоненты эконометрики, слайд №24Базовые компоненты эконометрики, слайд №25Базовые компоненты эконометрики, слайд №26Базовые компоненты эконометрики, слайд №27Базовые компоненты эконометрики, слайд №28Базовые компоненты эконометрики, слайд №29Базовые компоненты эконометрики, слайд №30Базовые компоненты эконометрики, слайд №31Базовые компоненты эконометрики, слайд №32Базовые компоненты эконометрики, слайд №33Базовые компоненты эконометрики, слайд №34Базовые компоненты эконометрики, слайд №35Базовые компоненты эконометрики, слайд №36Базовые компоненты эконометрики, слайд №37Базовые компоненты эконометрики, слайд №38Базовые компоненты эконометрики, слайд №39Базовые компоненты эконометрики, слайд №40Базовые компоненты эконометрики, слайд №41Базовые компоненты эконометрики, слайд №42Базовые компоненты эконометрики, слайд №43Базовые компоненты эконометрики, слайд №44Базовые компоненты эконометрики, слайд №45Базовые компоненты эконометрики, слайд №46Базовые компоненты эконометрики, слайд №47Базовые компоненты эконометрики, слайд №48Базовые компоненты эконометрики, слайд №49Базовые компоненты эконометрики, слайд №50Базовые компоненты эконометрики, слайд №51Базовые компоненты эконометрики, слайд №52Базовые компоненты эконометрики, слайд №53Базовые компоненты эконометрики, слайд №54Базовые компоненты эконометрики, слайд №55Базовые компоненты эконометрики, слайд №56Базовые компоненты эконометрики, слайд №57Базовые компоненты эконометрики, слайд №58Базовые компоненты эконометрики, слайд №59Базовые компоненты эконометрики, слайд №60Базовые компоненты эконометрики, слайд №61Базовые компоненты эконометрики, слайд №62Базовые компоненты эконометрики, слайд №63Базовые компоненты эконометрики, слайд №64Базовые компоненты эконометрики, слайд №65Базовые компоненты эконометрики, слайд №66Базовые компоненты эконометрики, слайд №67Базовые компоненты эконометрики, слайд №68Базовые компоненты эконометрики, слайд №69Базовые компоненты эконометрики, слайд №70Базовые компоненты эконометрики, слайд №71Базовые компоненты эконометрики, слайд №72

Содержание

Вы можете ознакомиться и скачать презентацию на тему Базовые компоненты эконометрики. Доклад-сообщение содержит 72 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1








«ЭКОНОМЕТРИКА»


Илона Юловна Парик
К.э.н. Доцент
Кафедра статистики и эконометрики
Описание слайда:
«ЭКОНОМЕТРИКА» Илона Юловна Парик К.э.н. Доцент Кафедра статистики и эконометрики

Слайд 2








Основная литература
Эконометрика: учебник / И.И. Елисеева [и др.]; под ред. И.И.Елисеевой. ‑ М.: Издательство Юрайт, 2012
Эконометрика : учеб. для студентов вузов по специальности 080601 "Статистика" и др. междисциплинар. специальностям / [И.И.Елисеева и др.] ; под ред. И.И.Елисеевой. - Москва: Проспект, 2011
Курышева С.В. Анализ временных рядов и прогнозирование: учебное пособие / С.В.Курышева, М.В. Боченина. – СПб. : Изд-во СПбГЭУ, 2014 
Практикум по эконометрике: учеб. пособие / И.И.Елисеева, С.В.Курышева, Н.М.Гордеенко и др.; под ред. И.И.Елисеевой. ‑ 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2008
Описание слайда:
Основная литература Эконометрика: учебник / И.И. Елисеева [и др.]; под ред. И.И.Елисеевой. ‑ М.: Издательство Юрайт, 2012 Эконометрика : учеб. для студентов вузов по специальности 080601 "Статистика" и др. междисциплинар. специальностям / [И.И.Елисеева и др.] ; под ред. И.И.Елисеевой. - Москва: Проспект, 2011 Курышева С.В. Анализ временных рядов и прогнозирование: учебное пособие / С.В.Курышева, М.В. Боченина. – СПб. : Изд-во СПбГЭУ, 2014 Практикум по эконометрике: учеб. пособие / И.И.Елисеева, С.В.Курышева, Н.М.Гордеенко и др.; под ред. И.И.Елисеевой. ‑ 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2008

Слайд 3








Дополнительная литература
Айвазян С.А. Методы эконометрики. ‑ М.: Инфра-М, 2010
Афанасьев В.Н., Юзбашев М. М. Анализ временных рядов и прогнозирование. – М.: Финансы и статистика, 2010
Доугерти К. Введение в эконометрику: Учебник. 2-е изд. / Пер. с англ. – М.: ИНФРА – М, 2007
Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный дисциплина: учебник. – М.: Дело, 2009
Чураков Е. П. Прогнозирование эконометрических временных рядов: учебник. ‑ М.: Финансы и статистика, 2008
Описание слайда:
Дополнительная литература Айвазян С.А. Методы эконометрики. ‑ М.: Инфра-М, 2010 Афанасьев В.Н., Юзбашев М. М. Анализ временных рядов и прогнозирование. – М.: Финансы и статистика, 2010 Доугерти К. Введение в эконометрику: Учебник. 2-е изд. / Пер. с англ. – М.: ИНФРА – М, 2007 Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный дисциплина: учебник. – М.: Дело, 2009 Чураков Е. П. Прогнозирование эконометрических временных рядов: учебник. ‑ М.: Финансы и статистика, 2008

Слайд 4








Рагнар Антон Киттиль Фриш
(норв. Ragnar Anton Kittil Frisch)
	 (1895-1973)
Описание слайда:
Рагнар Антон Киттиль Фриш (норв. Ragnar Anton Kittil Frisch) (1895-1973)

Слайд 5






1926 г. норвежский экономист Рагнар Фриш (1895-1973) предложил использовать термин «эконометрика» для обозначения самостоятельной отрасли научных исследований
Развернутое определение эконометрики было дано Рагнаром Фришем во вступительной статье первого номера журнала "Эконометрика" в 1933 г.
Описание слайда:
1926 г. норвежский экономист Рагнар Фриш (1895-1973) предложил использовать термин «эконометрика» для обозначения самостоятельной отрасли научных исследований Развернутое определение эконометрики было дано Рагнаром Фришем во вступительной статье первого номера журнала "Эконометрика" в 1933 г.

Слайд 6






	
	Эконометрика – это наука, которая дает конкретное количественное выражение общим (качественным) взаимосвязям экономических явлений и процессов, обусловленным экономической теорией
Описание слайда:
Эконометрика – это наука, которая дает конкретное количественное выражение общим (качественным) взаимосвязям экономических явлений и процессов, обусловленным экономической теорией

Слайд 7







БАЗОВЫЕ КОМПОНЕНТЫ ЭКОНОМЕТРИКИ
Описание слайда:
БАЗОВЫЕ КОМПОНЕНТЫ ЭКОНОМЕТРИКИ

Слайд 8






На основе экономической теории разрабатываются концепции развития изучаемых процессов
С помощью статистики эти процессы выражаются в статистических показателях
Математико-статистические методы позволяют строить модели изучаемых процессов, оценивать их параметры, степень соответствия реальным данным и прогнозировать развитие изучаемого явления
Описание слайда:
На основе экономической теории разрабатываются концепции развития изучаемых процессов С помощью статистики эти процессы выражаются в статистических показателях Математико-статистические методы позволяют строить модели изучаемых процессов, оценивать их параметры, степень соответствия реальным данным и прогнозировать развитие изучаемого явления

Слайд 9






	
	Главный инструмент эконометрики – эконометрическая модель, параметры которой оцениваются с помощью методов математической статистики
Описание слайда:
Главный инструмент эконометрики – эконометрическая модель, параметры которой оцениваются с помощью методов математической статистики

Слайд 10








Этапы построения эконометрической модели
Теоретическое описание рассматриваемого экономического процесса с отражением существующих тенденций
Сбор данных, анализ их качества
Спецификация модели. Устанавливаются экзогенные (внешние) и эндогенные (внутренние) переменные, выявляются связи и соотношения, определяется вид модели исходя из соответствующей теории связи между переменными
Оценка параметров модели
Верификация модели, то есть проверка достоверности построенной модели
Интерпретация результатов
Описание слайда:
Этапы построения эконометрической модели Теоретическое описание рассматриваемого экономического процесса с отражением существующих тенденций Сбор данных, анализ их качества Спецификация модели. Устанавливаются экзогенные (внешние) и эндогенные (внутренние) переменные, выявляются связи и соотношения, определяется вид модели исходя из соответствующей теории связи между переменными Оценка параметров модели Верификация модели, то есть проверка достоверности построенной модели Интерпретация результатов

Слайд 11










ПРИМЕНЕНИЕ ПАРНОЙ РЕГРЕССИИ В ЭКОНОМЕТРИЧЕСКИХ ИССЛЕДОВАНЯХ
Выбор типа математической функции при построении уравнения регрессии
Оценка параметров уравнения парной линейной регрессии
Показатели силы связи в моделях парной регрессии
Показатели тесноты связи в моделях парной регрессии
Статистическая оценка достоверности регрессионной модели
Интервальная оценка параметров уравнения парной регрессии
Использование модели парной регрессии для прогнозирования
Описание слайда:
ПРИМЕНЕНИЕ ПАРНОЙ РЕГРЕССИИ В ЭКОНОМЕТРИЧЕСКИХ ИССЛЕДОВАНЯХ Выбор типа математической функции при построении уравнения регрессии Оценка параметров уравнения парной линейной регрессии Показатели силы связи в моделях парной регрессии Показатели тесноты связи в моделях парной регрессии Статистическая оценка достоверности регрессионной модели Интервальная оценка параметров уравнения парной регрессии Использование модели парной регрессии для прогнозирования

Слайд 12








Задачи корреляционно-регрессионного анализа
	
Измерение параметров уравнения, выражающего связь между признаками. Эта задача решается оценкой параметров уравнения регрессии
Измерение тесноты связи между признаками. Данная задача решается показателей корреляции
Описание слайда:
Задачи корреляционно-регрессионного анализа Измерение параметров уравнения, выражающего связь между признаками. Эта задача решается оценкой параметров уравнения регрессии Измерение тесноты связи между признаками. Данная задача решается показателей корреляции

Слайд 13








Виды функций, наиболее часто используемые в эконометрическом моделировании
Описание слайда:
Виды функций, наиболее часто используемые в эконометрическом моделировании

Слайд 14








Методы выбора типа математической функции
Аналитический метод (теоретический анализ связи рассматриваемого фактора и результата)
Графический метод
Экспериментальный метод
Описание слайда:
Методы выбора типа математической функции Аналитический метод (теоретический анализ связи рассматриваемого фактора и результата) Графический метод Экспериментальный метод

Слайд 15







Линеаризация нелинейных уравнений
Описание слайда:
Линеаризация нелинейных уравнений

Слайд 16








Оценка параметров уравнения парной линейной регрессии
Для оценки параметров функций, линейных по параметрам, используется метод наименьших квадратов (МНК)
МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака  от теоретических  минимальна:
Описание слайда:
Оценка параметров уравнения парной линейной регрессии Для оценки параметров функций, линейных по параметрам, используется метод наименьших квадратов (МНК) МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от теоретических минимальна:

Слайд 17









Оценка параметров уравнения парной линейной регрессии
	Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно      и     :
Описание слайда:
Оценка параметров уравнения парной линейной регрессии Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно и :

Слайд 18








Формулы расчета параметров уравнения парной регрессии
     
 		  - свободный член уравнения регрессии (пересечение, intercept). Экономически не интерпретируется.
    		 - наклон линии регрессии (slope) или коэффициент регрессии. Он является мерой зависимости переменной        от переменной       . 
	В линейном уравнении регрессии параметр        является абсолютным показателем силы связи
Описание слайда:
Формулы расчета параметров уравнения парной регрессии - свободный член уравнения регрессии (пересечение, intercept). Экономически не интерпретируется. - наклон линии регрессии (slope) или коэффициент регрессии. Он является мерой зависимости переменной от переменной . В линейном уравнении регрессии параметр является абсолютным показателем силы связи

Слайд 19







Линия регрессии
Описание слайда:
Линия регрессии

Слайд 20






Условия применения МНК
Модель регрессии должна быть линейной по параметрам
Значения ошибки (остатка)- случайные. Их изменение не образует определенной модели
Число наблюдений должно быть больше числа оцениваемых параметров (в 5-6 раз)
Значения переменной x не должны быть одинаковыми
Изучаемая совокупность должна быть однородной
Отсутствие взаимосвязи между фактором x и остатком
Модель регрессии должна быть корректно специфицирована
В модели не должно наблюдаться тесной взаимосвязи между факторами (условие для множественной регрессии)
Описание слайда:
Условия применения МНК Модель регрессии должна быть линейной по параметрам Значения ошибки (остатка)- случайные. Их изменение не образует определенной модели Число наблюдений должно быть больше числа оцениваемых параметров (в 5-6 раз) Значения переменной x не должны быть одинаковыми Изучаемая совокупность должна быть однородной Отсутствие взаимосвязи между фактором x и остатком Модель регрессии должна быть корректно специфицирована В модели не должно наблюдаться тесной взаимосвязи между факторами (условие для множественной регрессии)

Слайд 21






Пример
Описание слайда:
Пример

Слайд 22


Базовые компоненты эконометрики, слайд №22
Описание слайда:

Слайд 23








Линейная зависимость
Описание слайда:
Линейная зависимость

Слайд 24


Базовые компоненты эконометрики, слайд №24
Описание слайда:

Слайд 25







Степенная зависимость
Описание слайда:
Степенная зависимость

Слайд 26







Степенная зависимость
Описание слайда:
Степенная зависимость

Слайд 27







Показатели силы связи в моделях парной регрессии

Абсолютные. Показывают, на сколько единиц в среднем изменяется результативный признак при изменении факторного признака на одну единицу. В линейном уравнении параметр         - абсолютный показатель силы связи
Относительные (коэффициенты эластичности). Показывают, на сколько процентов в среднем изменяется результативный признак при изменении факторного признака на один процент
Описание слайда:
Показатели силы связи в моделях парной регрессии Абсолютные. Показывают, на сколько единиц в среднем изменяется результативный признак при изменении факторного признака на одну единицу. В линейном уравнении параметр - абсолютный показатель силы связи Относительные (коэффициенты эластичности). Показывают, на сколько процентов в среднем изменяется результативный признак при изменении факторного признака на один процент

Слайд 28





Абсолютные и относительные показатели силы связи для основных видов функций
Описание слайда:
Абсолютные и относительные показатели силы связи для основных видов функций

Слайд 29







Продолжение примера
	
	
	С увеличением инвестиций в основной капитал на 1 тыс. руб. ВРП на душу населения возрастает в среднем на 2,354 тыс. руб.
Описание слайда:
Продолжение примера С увеличением инвестиций в основной капитал на 1 тыс. руб. ВРП на душу населения возрастает в среднем на 2,354 тыс. руб.

Слайд 30







Продолжение примера
		
Линейная функция:

		
Степенная функция:
Описание слайда:
Продолжение примера Линейная функция: Степенная функция:

Слайд 31







Показатели тесноты связи в моделях парной регрессии

Коэффициент детерминации
	показывает долю вариации (дисперсии) результативного признака, объясняемую регрессией, в общей вариации результата
Описание слайда:
Показатели тесноты связи в моделях парной регрессии Коэффициент детерминации показывает долю вариации (дисперсии) результативного признака, объясняемую регрессией, в общей вариации результата

Слайд 32


Базовые компоненты эконометрики, слайд №32
Описание слайда:

Слайд 33







Правило сложения дисперсий
                         
                                      - общая сумма квадратов отклонений (total sum of squares)
                          
                                     - факторная сумма квадратов отклонений    (sum of squares due to regression)
                           
                                    - остаточная сумма квадратов отклонений (sum of squares due to error)
Описание слайда:
Правило сложения дисперсий - общая сумма квадратов отклонений (total sum of squares) - факторная сумма квадратов отклонений (sum of squares due to regression) - остаточная сумма квадратов отклонений (sum of squares due to error)

Слайд 34







Коэффициент детерминации
Описание слайда:
Коэффициент детерминации

Слайд 35






Коэффициент корреляции
Описание слайда:
Коэффициент корреляции

Слайд 36








Шкала значений коэффициента (индекса) корреляции 
До 0,3 связь слабая
0,3-0,5 связь умеренная
0,5-0,7 связь заметная
0,7-0,9 связь высокая
0,9-1,0 связь весьма высокая, близкая к функциональной
Описание слайда:
Шкала значений коэффициента (индекса) корреляции До 0,3 связь слабая 0,3-0,5 связь умеренная 0,5-0,7 связь заметная 0,7-0,9 связь высокая 0,9-1,0 связь весьма высокая, близкая к функциональной

Слайд 37







Свойства линейного коэффициента корреляции
Это  стандартизованный коэффициент регрессии
Сравним для признаков, имеющих различные единицы измерения
Если связь между y и x отсутствует, то    	;
   	если              , это не всегда означает отсутствия связи (связь может быть нелинейной)
Описание слайда:
Свойства линейного коэффициента корреляции Это стандартизованный коэффициент регрессии Сравним для признаков, имеющих различные единицы измерения Если связь между y и x отсутствует, то ; если , это не всегда означает отсутствия связи (связь может быть нелинейной)

Слайд 38








Продолжение примера 
Линейная функция
Описание слайда:
Продолжение примера Линейная функция

Слайд 39







Продолжение примера
Расчет остаточной суммы квадратов отклонений по линейной функции
Описание слайда:
Продолжение примера Расчет остаточной суммы квадратов отклонений по линейной функции

Слайд 40








Продолжение примера
Расчет теоретических значений результативного признака линейной функции
Описание слайда:
Продолжение примера Расчет теоретических значений результативного признака линейной функции

Слайд 41







Продолжение примера
Расчет коэффициента детерминации для линейной функции
Описание слайда:
Продолжение примера Расчет коэффициента детерминации для линейной функции

Слайд 42







Продолжение примера
Расчет теоретических значений результативного признака степенной функции
Описание слайда:
Продолжение примера Расчет теоретических значений результативного признака степенной функции

Слайд 43







Продолжение примера
 Расчет остаточной суммы квадратов отклонений по степенной функции
Описание слайда:
Продолжение примера Расчет остаточной суммы квадратов отклонений по степенной функции

Слайд 44







Продолжение примера
Расчет показателей корреляции
Описание слайда:
Продолжение примера Расчет показателей корреляции

Слайд 45






Статистическая проверка гипотез 

	Статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Обозначается буквой H (лат. hypothesis)
Описание слайда:
Статистическая проверка гипотез Статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Обозначается буквой H (лат. hypothesis)

Слайд 46







Статистическая оценка достоверности регрессионной модели
Выдвигается H0 :r2  в генеральной совокупности  
Выдвигается H1: r2  в генеральной совокупности          
  
Определяется уровень значимости          (1 минус доверительная вероятность)
Рассчитывается критерий Фишера 
Определяется табличное значение критерия Фишера

Фактическое значение сравнивается с табличным
Описание слайда:
Статистическая оценка достоверности регрессионной модели Выдвигается H0 :r2 в генеральной совокупности Выдвигается H1: r2 в генеральной совокупности Определяется уровень значимости (1 минус доверительная вероятность) Рассчитывается критерий Фишера Определяется табличное значение критерия Фишера Фактическое значение сравнивается с табличным

Слайд 47






Критическая область – это область, попадание значения статистического критерия в которую приводит к отклонению H0 . Вероятность попадания значения критерия в эту область равна приятому уровню значимости (1 минус доверительная вероятность)
Область допустимых значений - область, попадание значения статистического критерия в которую приводит к принятию нулевой гипотезы
Описание слайда:
Критическая область – это область, попадание значения статистического критерия в которую приводит к отклонению H0 . Вероятность попадания значения критерия в эту область равна приятому уровню значимости (1 минус доверительная вероятность) Область допустимых значений - область, попадание значения статистического критерия в которую приводит к принятию нулевой гипотезы

Слайд 48







Оценка значимости уравнения регрессии
Если  F>Ftab. , то гипотеза  о случайной природе оцениваемых характеристик отклоняется и признается статистическая значимость и надежность уравнения
Если F<Ftab. , то гипотеза  о случайной природе оцениваемых характеристик не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии
Описание слайда:
Оценка значимости уравнения регрессии Если F>Ftab. , то гипотеза о случайной природе оцениваемых характеристик отклоняется и признается статистическая значимость и надежность уравнения Если F<Ftab. , то гипотеза о случайной природе оцениваемых характеристик не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии

Слайд 49







Число степеней свободы (degrees of freedom - df) - число свободно варьируемых переменных
Описание слайда:
Число степеней свободы (degrees of freedom - df) - число свободно варьируемых переменных

Слайд 50


Базовые компоненты эконометрики, слайд №50
Описание слайда:

Слайд 51







Продолжение примера
Расчет критерия Фишера
Для линейной функции:
Для степенной функции:
Описание слайда:
Продолжение примера Расчет критерия Фишера Для линейной функции: Для степенной функции:

Слайд 52






Таблица дисперсионного анализа
Описание слайда:
Таблица дисперсионного анализа

Слайд 53







Оценка качества модели на основе ошибки аппроксимации
Описание слайда:
Оценка качества модели на основе ошибки аппроксимации

Слайд 54





Продолжение примера
Расчет ошибки аппроксимации для линейной функции
Описание слайда:
Продолжение примера Расчет ошибки аппроксимации для линейной функции

Слайд 55








Оценка значимости коэффициентов регрессии
Выдвигается       :  коэффициент регрессии в генеральной совокупности равен 0          
Выдвигается     : коэффициент регрессии в генеральной совокупности  не равен 0 
Определяется уровень значимости
 Рассчитывается критерий Стьюдента 
Определяется табличное (критическое) значение критерия Стьюдента  ttab.  
Фактическое значение сравнивается с табличным
Описание слайда:
Оценка значимости коэффициентов регрессии Выдвигается : коэффициент регрессии в генеральной совокупности равен 0 Выдвигается : коэффициент регрессии в генеральной совокупности не равен 0 Определяется уровень значимости Рассчитывается критерий Стьюдента Определяется табличное (критическое) значение критерия Стьюдента ttab. Фактическое значение сравнивается с табличным

Слайд 56






Если t>ttab., то        отклоняется, то есть параметр       не случайно отличается от нуля, и сформировался под влиянием систематически действующего фактора
Если t<ttab., то       не отклоняется, и признается случайная природа формирования параметра
Описание слайда:
Если t>ttab., то отклоняется, то есть параметр не случайно отличается от нуля, и сформировался под влиянием систематически действующего фактора Если t<ttab., то не отклоняется, и признается случайная природа формирования параметра

Слайд 57






Расчет критерия Стьюдента   
             
         - случайная ошибка коэффициента регрессии
Описание слайда:
Расчет критерия Стьюдента - случайная ошибка коэффициента регрессии

Слайд 58







Продолжение примера
Описание слайда:
Продолжение примера

Слайд 59







Продолжение примера
Описание слайда:
Продолжение примера

Слайд 60







Построение доверительных интервалов для коэффициентов регрессии
Описание слайда:
Построение доверительных интервалов для коэффициентов регрессии

Слайд 61







Расчет показателей регрессии и корреляции с помощью пакета анализа в Excel
Установка пакета анализа:
Кнопка «Office»
Параметры Excel
Надстройки
Надстройки Excel
Перейти
Пакет анализа
После установки пакета анализа:
Данные
Анализ данных
Регрессия
Описание слайда:
Расчет показателей регрессии и корреляции с помощью пакета анализа в Excel Установка пакета анализа: Кнопка «Office» Параметры Excel Надстройки Надстройки Excel Перейти Пакет анализа После установки пакета анализа: Данные Анализ данных Регрессия

Слайд 62








Расчет показателей регрессии и корреляции с помощью пакета анализа в Excel
В диалоговом окне «регрессия» задаются следующее параметры:
-Входной интервал Y, - водится ссылка на диапазон ячеек, содержащий данные результативного признака

Входной интервал X, - водится ссылка на диапазон ячеек, содержащий данные факторного признака
-Если данные выделяются с названием граф, то устанавливается флажок метки
-Параметры вывода: выходной интервал (вводится ссылка на любую свободную ячейку на данном рабочем листе); другой рабочий лист или другая рабочая книга
-ОК
Описание слайда:
Расчет показателей регрессии и корреляции с помощью пакета анализа в Excel В диалоговом окне «регрессия» задаются следующее параметры: -Входной интервал Y, - водится ссылка на диапазон ячеек, содержащий данные результативного признака Входной интервал X, - водится ссылка на диапазон ячеек, содержащий данные факторного признака -Если данные выделяются с названием граф, то устанавливается флажок метки -Параметры вывода: выходной интервал (вводится ссылка на любую свободную ячейку на данном рабочем листе); другой рабочий лист или другая рабочая книга -ОК

Слайд 63


Базовые компоненты эконометрики, слайд №63
Описание слайда:

Слайд 64








Использование модели парной регрессии для прогнозирования
Описание слайда:
Использование модели парной регрессии для прогнозирования

Слайд 65


Базовые компоненты эконометрики, слайд №65
Описание слайда:

Слайд 66







95%-ый доверительный интервал
Описание слайда:
95%-ый доверительный интервал

Слайд 67







Продолжение примера
Описание слайда:
Продолжение примера

Слайд 68






Продолжение примера
Описание слайда:
Продолжение примера

Слайд 69







Продолжение примера
Описание слайда:
Продолжение примера

Слайд 70






Свойства остатков
Отсутствие связи между остатками и объясняющей переменной
Отсутствие связи между остатками и предсказанными значениями 
Математическое ожидание остатков равно нулю
Остатки имеют постоянную дисперсию. Дисперсия остатков равна единице. Постоянство дисперсии остатков называют гомоскедастичностью остатков. Если же дисперсия остатков непостоянна, то имеет место гетероскедастичность остатков
Остатки не коррелированны между собой
Остатки распределены по нормальному закону распределения
Описание слайда:
Свойства остатков Отсутствие связи между остатками и объясняющей переменной Отсутствие связи между остатками и предсказанными значениями Математическое ожидание остатков равно нулю Остатки имеют постоянную дисперсию. Дисперсия остатков равна единице. Постоянство дисперсии остатков называют гомоскедастичностью остатков. Если же дисперсия остатков непостоянна, то имеет место гетероскедастичность остатков Остатки не коррелированны между собой Остатки распределены по нормальному закону распределения

Слайд 71







График остатков (residual plot)
(случай гомоскедастичности)
Описание слайда:
График остатков (residual plot) (случай гомоскедастичности)

Слайд 72








Зависимость остатков от выровненного значения результата
Описание слайда:
Зависимость остатков от выровненного значения результата



Похожие презентации
Mypresentation.ru
Загрузить презентацию