🗊Презентация Эконометрика. Место эконометрики в управленческом процессе

Категория: Математика
Нажмите для полного просмотра!
Эконометрика. Место эконометрики в управленческом процессе, слайд №1Эконометрика. Место эконометрики в управленческом процессе, слайд №2Эконометрика. Место эконометрики в управленческом процессе, слайд №3Эконометрика. Место эконометрики в управленческом процессе, слайд №4Эконометрика. Место эконометрики в управленческом процессе, слайд №5Эконометрика. Место эконометрики в управленческом процессе, слайд №6Эконометрика. Место эконометрики в управленческом процессе, слайд №7Эконометрика. Место эконометрики в управленческом процессе, слайд №8Эконометрика. Место эконометрики в управленческом процессе, слайд №9Эконометрика. Место эконометрики в управленческом процессе, слайд №10Эконометрика. Место эконометрики в управленческом процессе, слайд №11Эконометрика. Место эконометрики в управленческом процессе, слайд №12Эконометрика. Место эконометрики в управленческом процессе, слайд №13Эконометрика. Место эконометрики в управленческом процессе, слайд №14Эконометрика. Место эконометрики в управленческом процессе, слайд №15Эконометрика. Место эконометрики в управленческом процессе, слайд №16Эконометрика. Место эконометрики в управленческом процессе, слайд №17Эконометрика. Место эконометрики в управленческом процессе, слайд №18Эконометрика. Место эконометрики в управленческом процессе, слайд №19Эконометрика. Место эконометрики в управленческом процессе, слайд №20Эконометрика. Место эконометрики в управленческом процессе, слайд №21Эконометрика. Место эконометрики в управленческом процессе, слайд №22Эконометрика. Место эконометрики в управленческом процессе, слайд №23Эконометрика. Место эконометрики в управленческом процессе, слайд №24Эконометрика. Место эконометрики в управленческом процессе, слайд №25Эконометрика. Место эконометрики в управленческом процессе, слайд №26Эконометрика. Место эконометрики в управленческом процессе, слайд №27Эконометрика. Место эконометрики в управленческом процессе, слайд №28Эконометрика. Место эконометрики в управленческом процессе, слайд №29Эконометрика. Место эконометрики в управленческом процессе, слайд №30Эконометрика. Место эконометрики в управленческом процессе, слайд №31Эконометрика. Место эконометрики в управленческом процессе, слайд №32Эконометрика. Место эконометрики в управленческом процессе, слайд №33Эконометрика. Место эконометрики в управленческом процессе, слайд №34Эконометрика. Место эконометрики в управленческом процессе, слайд №35Эконометрика. Место эконометрики в управленческом процессе, слайд №36Эконометрика. Место эконометрики в управленческом процессе, слайд №37Эконометрика. Место эконометрики в управленческом процессе, слайд №38Эконометрика. Место эконометрики в управленческом процессе, слайд №39Эконометрика. Место эконометрики в управленческом процессе, слайд №40Эконометрика. Место эконометрики в управленческом процессе, слайд №41Эконометрика. Место эконометрики в управленческом процессе, слайд №42Эконометрика. Место эконометрики в управленческом процессе, слайд №43Эконометрика. Место эконометрики в управленческом процессе, слайд №44Эконометрика. Место эконометрики в управленческом процессе, слайд №45Эконометрика. Место эконометрики в управленческом процессе, слайд №46Эконометрика. Место эконометрики в управленческом процессе, слайд №47Эконометрика. Место эконометрики в управленческом процессе, слайд №48Эконометрика. Место эконометрики в управленческом процессе, слайд №49Эконометрика. Место эконометрики в управленческом процессе, слайд №50Эконометрика. Место эконометрики в управленческом процессе, слайд №51Эконометрика. Место эконометрики в управленческом процессе, слайд №52Эконометрика. Место эконометрики в управленческом процессе, слайд №53Эконометрика. Место эконометрики в управленческом процессе, слайд №54Эконометрика. Место эконометрики в управленческом процессе, слайд №55Эконометрика. Место эконометрики в управленческом процессе, слайд №56Эконометрика. Место эконометрики в управленческом процессе, слайд №57Эконометрика. Место эконометрики в управленческом процессе, слайд №58Эконометрика. Место эконометрики в управленческом процессе, слайд №59Эконометрика. Место эконометрики в управленческом процессе, слайд №60Эконометрика. Место эконометрики в управленческом процессе, слайд №61Эконометрика. Место эконометрики в управленческом процессе, слайд №62Эконометрика. Место эконометрики в управленческом процессе, слайд №63Эконометрика. Место эконометрики в управленческом процессе, слайд №64Эконометрика. Место эконометрики в управленческом процессе, слайд №65Эконометрика. Место эконометрики в управленческом процессе, слайд №66

Содержание

Вы можете ознакомиться и скачать презентацию на тему Эконометрика. Место эконометрики в управленческом процессе. Доклад-сообщение содержит 66 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Эконометрика. Место эконометрики в управленческом процессе, слайд №1
Описание слайда:

Слайд 2





Литература
Магнус Я.Р., Катышев П.К., Пересецкий А.А. - Эконометрика. Начальный курс: учебник.
Елисеева И.И. – Эконометрика: учебник
P.Newbold – Statistics for Business & Economics
Описание слайда:
Литература Магнус Я.Р., Катышев П.К., Пересецкий А.А. - Эконометрика. Начальный курс: учебник. Елисеева И.И. – Эконометрика: учебник P.Newbold – Statistics for Business & Economics

Слайд 3





Эконометрика
«Эконометрика — это не то же самое, что экономическая статистика. Она не идентична и тому, что мы называем экономической теорией, хотя значительная часть этой теории носит количественный характер. Эконометрика не является синонимом приложений математики к экономике. Как показывает опыт, каждая из трех отправных точек — статистика, экономическая теория и математика — необходимое, но не достаточное условие для понимания количественных соотношений в современной экономической жизни. Это — единство всех трех доставляющих. И это единство образует эконометрику» (Рагнар Фриш, 1933г.)
Эконометрика — это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов
Описание слайда:
Эконометрика «Эконометрика — это не то же самое, что экономическая статистика. Она не идентична и тому, что мы называем экономической теорией, хотя значительная часть этой теории носит количественный характер. Эконометрика не является синонимом приложений математики к экономике. Как показывает опыт, каждая из трех отправных точек — статистика, экономическая теория и математика — необходимое, но не достаточное условие для понимания количественных соотношений в современной экономической жизни. Это — единство всех трех доставляющих. И это единство образует эконометрику» (Рагнар Фриш, 1933г.) Эконометрика — это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов

Слайд 4





Место эконометрики в управленческом процессе
Описание слайда:
Место эконометрики в управленческом процессе

Слайд 5





Задачи, решаемые эконометрическим методом
Описание слайда:
Задачи, решаемые эконометрическим методом

Слайд 6


Эконометрика. Место эконометрики в управленческом процессе, слайд №6
Описание слайда:

Слайд 7





Этапы эконометрического исследования
постановка проблемы
получение данных и анализ их качества
спецификация модели
оценка параметров
проверка качества (адекватности) модели
интерпретация результатов
Описание слайда:
Этапы эконометрического исследования постановка проблемы получение данных и анализ их качества спецификация модели оценка параметров проверка качества (адекватности) модели интерпретация результатов

Слайд 8





Этапы (подробнее)
качественный анализ связей экономических переменных — выделение зависимых (y) и независимых переменных (х);
подбор данных;
спецификация формы связи между у и x;
оценка параметров модели;
проверка ряда гипотез о свойствах распределения вероятностей для случайной компоненты (гипотезы о средней, дисперсии и ковариации);
анализ мультиколлинеарности объясняющих переменных, оценка ее статистической значимости, выявление переменных, ответственных за мультиколлинеарность;
введение фиктивных переменных;
выявление автокорреляции, лагов;
выявление тренда, циклической и случайной компонент;
проверка остатков на гетероскедастичность;
анализ структуры связей и построение системы одновременных уравнений;
проверка условия идентификации;
оценивание параметров системы одновременных уравнений (двухшаговый и трехшаговый метод наименьших квадратов, метод максимального правдоподобия);
моделирование на основе системы временных рядов: проблемы стационарности и коинтеграции;
построение рекурсивных моделей, ARIMA- и VAR- моделей;
проблемы идентификации и оценивания параметров.
Описание слайда:
Этапы (подробнее) качественный анализ связей экономических переменных — выделение зависимых (y) и независимых переменных (х); подбор данных; спецификация формы связи между у и x; оценка параметров модели; проверка ряда гипотез о свойствах распределения вероятностей для случайной компоненты (гипотезы о средней, дисперсии и ковариации); анализ мультиколлинеарности объясняющих переменных, оценка ее статистической значимости, выявление переменных, ответственных за мультиколлинеарность; введение фиктивных переменных; выявление автокорреляции, лагов; выявление тренда, циклической и случайной компонент; проверка остатков на гетероскедастичность; анализ структуры связей и построение системы одновременных уравнений; проверка условия идентификации; оценивание параметров системы одновременных уравнений (двухшаговый и трехшаговый метод наименьших квадратов, метод максимального правдоподобия); моделирование на основе системы временных рядов: проблемы стационарности и коинтеграции; построение рекурсивных моделей, ARIMA- и VAR- моделей; проблемы идентификации и оценивания параметров.

Слайд 9





Сбор данных
При моделировании экономических процессов используют следующие типы данных:
пространственные данные
Пространственными данными является набор сведений по разным объектам, взятым за один и тот же период или момент времени. Например, набор сведений по разным фирмам (объем производства, численность работников, размер основных производственных фондов и пр.).
временные данные
Временными данными является набор сведений, характеризующий один и тот же объект, но за разные периоды или моменты времени. Например, ежеквартальные данные о средней заработной плате, индексе потребительских цен, числе занятых за последние годы, ежедневный курс доллара США. Отличительной особенностью временных данных является то, что они естественным образом упорядочены по времени.
панельные данные
Панельными данными является набор сведений по разным объектам, взятый за интервал времени. То есть множество объектов наблюдается в течение определенного времени.
Описание слайда:
Сбор данных При моделировании экономических процессов используют следующие типы данных: пространственные данные Пространственными данными является набор сведений по разным объектам, взятым за один и тот же период или момент времени. Например, набор сведений по разным фирмам (объем производства, численность работников, размер основных производственных фондов и пр.). временные данные Временными данными является набор сведений, характеризующий один и тот же объект, но за разные периоды или моменты времени. Например, ежеквартальные данные о средней заработной плате, индексе потребительских цен, числе занятых за последние годы, ежедневный курс доллара США. Отличительной особенностью временных данных является то, что они естественным образом упорядочены по времени. панельные данные Панельными данными является набор сведений по разным объектам, взятый за интервал времени. То есть множество объектов наблюдается в течение определенного времени.

Слайд 10





Типы переменных
Типы переменных, участвующих в эконометрической модели:
эндогенные (зависимые) — значения которых определяются внутри модели, или взаимозависимые (у);
экзогенные (независимые) – значения которых задаются извне, автономно, в определенной степени они являются управляемыми (планируемыми) (х)
лаговые — экзогенные или эндогенные переменные эконометрической модели, датированные предыдущими моментами времени и находящиеся в уравнении с текущими переменными. Например: yt — текущая эндогенная переменная, yt-1 — лаговая эндогенная переменная, yt-2  — тоже лаговая эндогенная переменная;
Предопределенные переменные (объясняющие переменные). К ним относятся лаговые и текущие экзогенные переменные (xt , xt-1 ), а также лаговые эндогенные переменные (yt-1 ).
Любая эконометрическая модель предназначена для объяснения значений текущих эндогенных переменных (одной или нескольких) в зависимости от значений предопределенных переменных.
Описание слайда:
Типы переменных Типы переменных, участвующих в эконометрической модели: эндогенные (зависимые) — значения которых определяются внутри модели, или взаимозависимые (у); экзогенные (независимые) – значения которых задаются извне, автономно, в определенной степени они являются управляемыми (планируемыми) (х) лаговые — экзогенные или эндогенные переменные эконометрической модели, датированные предыдущими моментами времени и находящиеся в уравнении с текущими переменными. Например: yt — текущая эндогенная переменная, yt-1 — лаговая эндогенная переменная, yt-2 — тоже лаговая эндогенная переменная; Предопределенные переменные (объясняющие переменные). К ним относятся лаговые и текущие экзогенные переменные (xt , xt-1 ), а также лаговые эндогенные переменные (yt-1 ). Любая эконометрическая модель предназначена для объяснения значений текущих эндогенных переменных (одной или нескольких) в зависимости от значений предопределенных переменных.

Слайд 11





Спецификация моделей
Выделяют три основных класса моделей.
I. Регрессионные модели с одним уравнением (факторов может быть один или несколько)
 Линейные
 Нелинейные
II. Модели временных рядов, полученные с помощью следующих методов
 Экспоненциального сглаживания
 Сезонной декомпозиции
 Авторегрессии
 ARIMA и др.
III. Системы одновременных уравнений  
Описание слайда:
Спецификация моделей Выделяют три основных класса моделей. I. Регрессионные модели с одним уравнением (факторов может быть один или несколько) Линейные Нелинейные II. Модели временных рядов, полученные с помощью следующих методов Экспоненциального сглаживания Сезонной декомпозиции Авторегрессии ARIMA и др. III. Системы одновременных уравнений  

Слайд 12





Линейность и аддитивность
Функция нескольких переменных y=f(x1,...,xn) линейна по всем независимым переменным тогда и только тогда, когда dy/dxi не включает xi, то есть когда d(dy/dxi)=0, эффект данного изменения по xi не зависит от уровня xi. В противном случае нелинейна
Функция является аддитивной по xi тогда и только тогда, когда dy/xi не включает xj , т.е. тогда, когда d(dy/dxi)/dxj=0 , эффект данного изменения по каждой независимой переменной не зависит от уровня другой переменной. В противном случае мультипликативна
Описание слайда:
Линейность и аддитивность Функция нескольких переменных y=f(x1,...,xn) линейна по всем независимым переменным тогда и только тогда, когда dy/dxi не включает xi, то есть когда d(dy/dxi)=0, эффект данного изменения по xi не зависит от уровня xi. В противном случае нелинейна Функция является аддитивной по xi тогда и только тогда, когда dy/xi не включает xj , т.е. тогда, когда d(dy/dxi)/dxj=0 , эффект данного изменения по каждой независимой переменной не зависит от уровня другой переменной. В противном случае мультипликативна

Слайд 13


Эконометрика. Место эконометрики в управленческом процессе, слайд №13
Описание слайда:

Слайд 14





Оценка параметров
Этот этап предполагает нахождение неизвестных элементов в модели тем или иным способом.
Наиболее распространенным методом является МНК. МНК применяется к моделям, линейным по параметрам. Если функция регрессии нелинейна по параметрам, необходима её предварительная линеаризация.
Если распределение остатков ненормально, то наилучшим методом их оценки будет не МНК, а ММП.
Также если не выполняются предпосылки МНК, то для нахождения параметров можно использовать ММП.
Описание слайда:
Оценка параметров Этот этап предполагает нахождение неизвестных элементов в модели тем или иным способом. Наиболее распространенным методом является МНК. МНК применяется к моделям, линейным по параметрам. Если функция регрессии нелинейна по параметрам, необходима её предварительная линеаризация. Если распределение остатков ненормально, то наилучшим методом их оценки будет не МНК, а ММП. Также если не выполняются предпосылки МНК, то для нахождения параметров можно использовать ММП.

Слайд 15





Проверка качества модели
Это важнейший этап, заключающийся в определении следующего:
погрешности расчетов
точности предсказания по модели (доверительный интервал прогноза)
устойчивости модели к выборке (проверка по тестам Стьюдента и Фишера)
Описание слайда:
Проверка качества модели Это важнейший этап, заключающийся в определении следующего: погрешности расчетов точности предсказания по модели (доверительный интервал прогноза) устойчивости модели к выборке (проверка по тестам Стьюдента и Фишера)

Слайд 16





Интерпретация результатов
Модель должна быть достаточно проста и отражать экономические взаимосвязи. В ином случае параметры не будут интерпретируемы.
Однако если модель строилась исключительно для прогноза, требования к экономической интерпретации смягчаются.
Описание слайда:
Интерпретация результатов Модель должна быть достаточно проста и отражать экономические взаимосвязи. В ином случае параметры не будут интерпретируемы. Однако если модель строилась исключительно для прогноза, требования к экономической интерпретации смягчаются.

Слайд 17


Эконометрика. Место эконометрики в управленческом процессе, слайд №17
Описание слайда:

Слайд 18





Базовые термины и идеи
• Генеральная совокупность (population) (иногда используется калька с англоязычного термина – «популяция») – все множество объектов, в отношении которых формулируется исследовательская гипотеза
• Выборка (sample) – ограниченная по численности группа объектов (респондентов), отбираемая из генеральной совокупности для изучения ее свойств
• Сплошное и выборочное исследование
• Репрезентативность выборки (representativeness of sample) – способность выборки представлять изучаемые явления достаточно полно с точки зрения их изменчивости в генеральной совокупности
• Любое исследование направлено на определение некоторой характеристики или выявление связи между признаками
• Связь может характеризоваться не только величиной (степенью связи) и направлением, но также и надежностью или статистической достоверностью (statistical confidence) - эта характеристика связи показывает, можно ли распространить результаты, полученные на данной выборке, на всю генеральную совокупность, из которой взята эта выборка
Описание слайда:
Базовые термины и идеи • Генеральная совокупность (population) (иногда используется калька с англоязычного термина – «популяция») – все множество объектов, в отношении которых формулируется исследовательская гипотеза • Выборка (sample) – ограниченная по численности группа объектов (респондентов), отбираемая из генеральной совокупности для изучения ее свойств • Сплошное и выборочное исследование • Репрезентативность выборки (representativeness of sample) – способность выборки представлять изучаемые явления достаточно полно с точки зрения их изменчивости в генеральной совокупности • Любое исследование направлено на определение некоторой характеристики или выявление связи между признаками • Связь может характеризоваться не только величиной (степенью связи) и направлением, но также и надежностью или статистической достоверностью (statistical confidence) - эта характеристика связи показывает, можно ли распространить результаты, полученные на данной выборке, на всю генеральную совокупность, из которой взята эта выборка

Слайд 19





Парная регрессия
Парная регрессия – это уравнение, описывающее корреляционную связь между парой переменных: зависимой переменной (результатом) y и независимой переменной (фактором) x.
y=f(x)
Функция может быть как линейной y=α+βx+ε, так и нелинейной y=α+β/x+ε, y=α+βlnx+ε, y=αβxε.
Описание слайда:
Парная регрессия Парная регрессия – это уравнение, описывающее корреляционную связь между парой переменных: зависимой переменной (результатом) y и независимой переменной (фактором) x. y=f(x) Функция может быть как линейной y=α+βx+ε, так и нелинейной y=α+β/x+ε, y=α+βlnx+ε, y=αβxε.

Слайд 20





Парная линейная регрессия
Предположим, что для генеральной совокупности связь выражается уравнением
yi=α+βxi+εi, i=1,…,N
yi – i-е фактическое значение зависимой переменной y;
xi – i-е значение независимой переменной x;
α и β – генеральные параметры парной линейной регрессии
N – объем генеральной совокупности
εi – теоретические ошибки, в силу наличия еще и других объясняющих факторов, не учтенных в модели или ошибок спецификации
Описание слайда:
Парная линейная регрессия Предположим, что для генеральной совокупности связь выражается уравнением yi=α+βxi+εi, i=1,…,N yi – i-е фактическое значение зависимой переменной y; xi – i-е значение независимой переменной x; α и β – генеральные параметры парной линейной регрессии N – объем генеральной совокупности εi – теоретические ошибки, в силу наличия еще и других объясняющих факторов, не учтенных в модели или ошибок спецификации

Слайд 21





Парная линейная регрессия
Но у нас есть ограниченное объективными причинами кол-во наблюдений (выборка), для которых мы на практике можем построить уравнение =a+bxi
i=a+bxi+ei, i=1,…,n
yi – i-е фактическое значение зависимой переменной y;
 - i-е значение зависимой переменной, рассчитанное по уравнению прямой
xi – i-е значение независимой переменной x;
a и b – выборочные параметры парной линейной регрессии
n – объем выборки
ei – наблюдаемые остатки, в силу наличия еще и других объясняющих факторов, не учтенных в модели или ошибок спецификации
ei= yi –
Описание слайда:
Парная линейная регрессия Но у нас есть ограниченное объективными причинами кол-во наблюдений (выборка), для которых мы на практике можем построить уравнение =a+bxi i=a+bxi+ei, i=1,…,n yi – i-е фактическое значение зависимой переменной y; - i-е значение зависимой переменной, рассчитанное по уравнению прямой xi – i-е значение независимой переменной x; a и b – выборочные параметры парной линейной регрессии n – объем выборки ei – наблюдаемые остатки, в силу наличия еще и других объясняющих факторов, не учтенных в модели или ошибок спецификации ei= yi –

Слайд 22





 
Буквально перед нами стоит задача провести прямую линию через множество точек в плоскости x-y.
Описание слайда:
Буквально перед нами стоит задача провести прямую линию через множество точек в плоскости x-y.

Слайд 23





Построение прямой через множество точек
Два параметра a и b определяют наклон прямой и сдвиг по вертикали. Существует много способов провести прямую через точки на плоскости.
можно проводить прямую через две произвольные точки
пытаться минимизировать сумму квадратов остатков  
пытаться минимизировать сумму модулей отклонений 
любая другая мера учета отклонений , например функция Хубера, которая при малых отклонениях квадратична, а при больших линейна
Описание слайда:
Построение прямой через множество точек Два параметра a и b определяют наклон прямой и сдвиг по вертикали. Существует много способов провести прямую через точки на плоскости. можно проводить прямую через две произвольные точки пытаться минимизировать сумму квадратов остатков пытаться минимизировать сумму модулей отклонений любая другая мера учета отклонений , например функция Хубера, которая при малых отклонениях квадратична, а при больших линейна

Слайд 24





Построение прямой через множество точек
Каждый метод выбора a и b обладает плюсами и минусами.
Построение по двум точкам неустойчиво к выбору таких точек и может давать противоречивые результаты.
Сумма квадратов отклонений проста в вычислениях, обладает хорошими статистическими свойствами, позволяет выстроить теорию для проверки различных статистических гипотез, но чувствительна к «выбросам»
Сумма модулей отклонений нечувствительна к «выбросам», но сложна в вычислении
Функция Хубера пытается совместить плюсы обеих мер.
Описание слайда:
Построение прямой через множество точек Каждый метод выбора a и b обладает плюсами и минусами. Построение по двум точкам неустойчиво к выбору таких точек и может давать противоречивые результаты. Сумма квадратов отклонений проста в вычислениях, обладает хорошими статистическими свойствами, позволяет выстроить теорию для проверки различных статистических гипотез, но чувствительна к «выбросам» Сумма модулей отклонений нечувствительна к «выбросам», но сложна в вычислении Функция Хубера пытается совместить плюсы обеих мер.

Слайд 25





Метод наименьших квадратов (МНК)
Рассмотрим задачу наилучшей аппроксимации набора наблюдений xi,yi линейной функцией =a+bxi в смысле минимизации функционала
F= 
то есть задачу можно сформулировать следующим образом: имея в наличии набор данных xi,yi подобрать значения a и b, чтобы функция F(a,b) была минимальна. Эта задача безусловной нелинейной оптимизации решается через нахождение экстремума функции двух переменных. Найдем экстремум функции двух переменных.
Описание слайда:
Метод наименьших квадратов (МНК) Рассмотрим задачу наилучшей аппроксимации набора наблюдений xi,yi линейной функцией =a+bxi в смысле минимизации функционала F= то есть задачу можно сформулировать следующим образом: имея в наличии набор данных xi,yi подобрать значения a и b, чтобы функция F(a,b) была минимальна. Эта задача безусловной нелинейной оптимизации решается через нахождение экстремума функции двух переменных. Найдем экстремум функции двух переменных.

Слайд 26





Метод наименьших квадратов (МНК)
Для этого вычислим производные функции F по параметрам a и b
Описание слайда:
Метод наименьших квадратов (МНК) Для этого вычислим производные функции F по параметрам a и b

Слайд 27





Метод наименьших квадратов (МНК)
Раскроем скобки и получим
Стандартная форма нормальных уравнений
Описание слайда:
Метод наименьших квадратов (МНК) Раскроем скобки и получим Стандартная форма нормальных уравнений

Слайд 28





Метод наименьших квадратов (МНК)
Решая систему, получим значения a и b
Так мы нашли неизвестные параметры модели =a+bxi
Описание слайда:
Метод наименьших квадратов (МНК) Решая систему, получим значения a и b Так мы нашли неизвестные параметры модели =a+bxi

Слайд 29





Экономическая интерпретация a и b
Коэффициент b показывает среднее изменение результативного признака (в единицах измерения y) при изменении величины фактора x на 1 единицу его измерения.
Коэффициент a показывает среднее значение результативного признака при x=0, если практически x может принимать нулевое значение. В ином случае, коэффициент a не имеет экономической интерпретации.
Описание слайда:
Экономическая интерпретация a и b Коэффициент b показывает среднее изменение результативного признака (в единицах измерения y) при изменении величины фактора x на 1 единицу его измерения. Коэффициент a показывает среднее значение результативного признака при x=0, если практически x может принимать нулевое значение. В ином случае, коэффициент a не имеет экономической интерпретации.

Слайд 30





Коэффициент корреляции
Наряду с оценками a и b часто сразу оценивают тесноту связи между случайными величинами x и y с помощью линейного коэффициента корреляции rxy
Описание слайда:
Коэффициент корреляции Наряду с оценками a и b часто сразу оценивают тесноту связи между случайными величинами x и y с помощью линейного коэффициента корреляции rxy

Слайд 31





До этого нас интересовало только качество подгонки прямой к данным. Теперь добавим к постановке задачи некоторые статистические свойства данных. Для одного и того же xi мы можем наблюдать разные значения yi. К примеру x-доход семьи, y- расходы на питание. Две семьи с одинаковым доходом могут тратить разное количество денег на питание. Из-за этого у наблюдений будут разные отклонения от расчётных значений, то есть разные ошибки.
До этого нас интересовало только качество подгонки прямой к данным. Теперь добавим к постановке задачи некоторые статистические свойства данных. Для одного и того же xi мы можем наблюдать разные значения yi. К примеру x-доход семьи, y- расходы на питание. Две семьи с одинаковым доходом могут тратить разное количество денег на питание. Из-за этого у наблюдений будут разные отклонения от расчётных значений, то есть разные ошибки.
Описание слайда:
До этого нас интересовало только качество подгонки прямой к данным. Теперь добавим к постановке задачи некоторые статистические свойства данных. Для одного и того же xi мы можем наблюдать разные значения yi. К примеру x-доход семьи, y- расходы на питание. Две семьи с одинаковым доходом могут тратить разное количество денег на питание. Из-за этого у наблюдений будут разные отклонения от расчётных значений, то есть разные ошибки. До этого нас интересовало только качество подгонки прямой к данным. Теперь добавим к постановке задачи некоторые статистические свойства данных. Для одного и того же xi мы можем наблюдать разные значения yi. К примеру x-доход семьи, y- расходы на питание. Две семьи с одинаковым доходом могут тратить разное количество денег на питание. Из-за этого у наблюдений будут разные отклонения от расчётных значений, то есть разные ошибки.

Слайд 32





Какова природа ошибки εi? Откуда берутся отличия фактического значения от расчетного?
Какова природа ошибки εi? Откуда берутся отличия фактического значения от расчетного?
 1) Наша модель является упрощением действительности и на самом деле есть еще другие параметры, от которых зависит y. Расходы на питание могут также зависеть от региона проживания, количества членов семьи, образа жизни, склонности к потреблению.
2) Трудности в измерении данных (присутствуют ошибки измерения).
Можно считать, что εi – случайная величина с некоторой функцией распределения, которой соответствует функция распределения случайной величины yi.
Описание слайда:
Какова природа ошибки εi? Откуда берутся отличия фактического значения от расчетного? Какова природа ошибки εi? Откуда берутся отличия фактического значения от расчетного? 1) Наша модель является упрощением действительности и на самом деле есть еще другие параметры, от которых зависит y. Расходы на питание могут также зависеть от региона проживания, количества членов семьи, образа жизни, склонности к потреблению. 2) Трудности в измерении данных (присутствуют ошибки измерения). Можно считать, что εi – случайная величина с некоторой функцией распределения, которой соответствует функция распределения случайной величины yi.

Слайд 33





Основные гипотезы
yi=α+βxi+εi, i=1,…,N – спецификация модели
xi - детерминированная величина, где xi-разные величины
M[εi]=0, M[εi]=D[εi]=σ2 не зависит от xi или от t
M[εi, εj]=0 – некоррелированность ошибок для разных наблюдений
Ошибки εi имеют совместное нормальное распределение N(0, σ2)
 В этом случае модель называется классической нормальной линейной регрессионной моделью. (Classical Normal Linear Regression Model)
Описание слайда:
Основные гипотезы yi=α+βxi+εi, i=1,…,N – спецификация модели xi - детерминированная величина, где xi-разные величины M[εi]=0, M[εi]=D[εi]=σ2 не зависит от xi или от t M[εi, εj]=0 – некоррелированность ошибок для разных наблюдений Ошибки εi имеют совместное нормальное распределение N(0, σ2) В этом случае модель называется классической нормальной линейной регрессионной моделью. (Classical Normal Linear Regression Model)

Слайд 34





Основные гипотезы
1,2. спецификация модели отражает наше преставление о механизме зависимости yi от xi и сам выбор объясняющей переменной xi . Чтобы установить влияние xi они должны принимать различные значения.
Описание слайда:
Основные гипотезы 1,2. спецификация модели отражает наше преставление о механизме зависимости yi от xi и сам выбор объясняющей переменной xi . Чтобы установить влияние xi они должны принимать различные значения.

Слайд 35





Основные гипотезы
3. M[εi]=0, M[εi]=D[εi]=σ2 не зависит от xi или от t
Условие независимости дисперсии ошибки от номера наблюдения или xi называется гомоскедастичностью. В противоположном случае, наблюдают явление гетероскедастичности.
Описание слайда:
Основные гипотезы 3. M[εi]=0, M[εi]=D[εi]=σ2 не зависит от xi или от t Условие независимости дисперсии ошибки от номера наблюдения или xi называется гомоскедастичностью. В противоположном случае, наблюдают явление гетероскедастичности.

Слайд 36





Основные гипотезы
4. M[εi, εj]=0 – некоррелированность ошибок для разных наблюдений
В случае, когда это условие не выполняется, говорят об автокорреляции ошибок. Часто такое происходит с временным выборками ил временными рядами.
Описание слайда:
Основные гипотезы 4. M[εi, εj]=0 – некоррелированность ошибок для разных наблюдений В случае, когда это условие не выполняется, говорят об автокорреляции ошибок. Часто такое происходит с временным выборками ил временными рядами.

Слайд 37





Теорема Гаусса-Маркова
Задача теперь- статистически оценить три параметра: a,b, σ2
В предположениях модели:
yi=α+βxi+εi, i=1,…,N – спецификация модели
xi - детерминированная величина, где xi-разные величины
M[εi]=0, M[εi]=D[εi]=σ2 не зависит от xi или от t
M[εi, εj]=0 – некоррелированность ошибок для разных наблюдений
оценки a и b, полученные по методу наименьших квадратов(МНК), имеют наименьшую дисперсию (то есть эффективны) в классе всех линейных несмещенных оценок.
Описание слайда:
Теорема Гаусса-Маркова Задача теперь- статистически оценить три параметра: a,b, σ2 В предположениях модели: yi=α+βxi+εi, i=1,…,N – спецификация модели xi - детерминированная величина, где xi-разные величины M[εi]=0, M[εi]=D[εi]=σ2 не зависит от xi или от t M[εi, εj]=0 – некоррелированность ошибок для разных наблюдений оценки a и b, полученные по методу наименьших квадратов(МНК), имеют наименьшую дисперсию (то есть эффективны) в классе всех линейных несмещенных оценок.

Слайд 38





Статистические свойства оценок
Статистические оценки  (или просто оценки)— это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины. 
Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру. M[b]=β
Эффективная оценка – это несмещенная оценка, имеющая наименьшую дисперсию из всех возможных несмещенных оценок данного параметра. D[b]<D[b*]
Описание слайда:
Статистические свойства оценок Статистические оценки (или просто оценки)— это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины. Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру. M[b]=β Эффективная оценка – это несмещенная оценка, имеющая наименьшую дисперсию из всех возможных несмещенных оценок данного параметра. D[b]<D[b*]

Слайд 39





Задача
Пусть X1, X2, X3, X4 — случайная выборка значений из генеральной нормальной совокупности со средним   и дисперсией .  Рассмотрим две оценки :
Покажите, что обе оценки несмещенные.
Какая из оценок более эффективна?
Найдите относительную эффективность двух оценок.
Найдите несмещенную оценку, более эффективную, чем каждая из двух оценок .
Описание слайда:
Задача Пусть X1, X2, X3, X4 — случайная выборка значений из генеральной нормальной совокупности со средним и дисперсией . Рассмотрим две оценки : Покажите, что обе оценки несмещенные. Какая из оценок более эффективна? Найдите относительную эффективность двух оценок. Найдите несмещенную оценку, более эффективную, чем каждая из двух оценок .

Слайд 40





Дисперсия ошибок и ее оценка
σ2 – дисперсия теоретических ошибок (то есть для генеральной совокупности)
σ2 =
S2 – несмещенная оценка дисперсии ошибок σ2 – то есть то, что мы можем наблюдать в выборке.
S2 = n/(n-2)* σ2 =
Описание слайда:
Дисперсия ошибок и ее оценка σ2 – дисперсия теоретических ошибок (то есть для генеральной совокупности) σ2 = S2 – несмещенная оценка дисперсии ошибок σ2 – то есть то, что мы можем наблюдать в выборке. S2 = n/(n-2)* σ2 =

Слайд 41





Дисперсии параметров a и b
Величина дисперсии остатков напрямую влияет на дисперсию оценок a и b. (Напоминаю: a и b – случайные величины)
D[b]=
D[a]=
Вывод формул дисперсии остатков в Я.Р. Магнус-Эконометрика:начальный курс
Описание слайда:
Дисперсии параметров a и b Величина дисперсии остатков напрямую влияет на дисперсию оценок a и b. (Напоминаю: a и b – случайные величины) D[b]= D[a]= Вывод формул дисперсии остатков в Я.Р. Магнус-Эконометрика:начальный курс

Слайд 42





Распределение оценок a и b
Так как a и b являются линейными функциями от  y, то они тоже имеют нормальное распределение
a~N(α, ) 	b~N(β, )
Значит (a-α)/~N(0,1), аналогично b.
Но поскольку мы не знаем , то заменяем ее на S2, при этом ta=(a-α)/~t(n-2), и аналогично для b
tb=(b- β)/~t(n-2)
Описание слайда:
Распределение оценок a и b Так как a и b являются линейными функциями от y, то они тоже имеют нормальное распределение a~N(α, ) b~N(β, ) Значит (a-α)/~N(0,1), аналогично b. Но поскольку мы не знаем , то заменяем ее на S2, при этом ta=(a-α)/~t(n-2), и аналогично для b tb=(b- β)/~t(n-2)

Слайд 43





Тест значимости параметров по Стьюденту
Статистику tb можно использовать для проверки статистической гипотезы H0: β=β0 против альтернативной гипотезы H1: β≠β0. Наиболее просто выглядит гипотеза H0: β=0 (в генеральной совокупности связи нет). Тогда
tb=b/sb~t(n-2), где sb=
Зададимся, например 2,5% точкой t-распределения с (n-2) степенями свободы t0,025 , т.е. P(-t0,025 <tb< t0,025 )=0,95
Мы отвергаем гипотезу H0 (и принимаем H1) на 5% уровне значимости, если  |tb|>t0,025 («редкое» событие с точки зрения гипотезы H0), в противном случае мы не можем отвергнуть H0 (и принимаем H0). Вероятность найти связь там, где ее на самом деле нет (β=0 , а |tb|>t0,025 ) называется ошибкой первого рода и не превышает уровня значимости.
Аналогично для проверки значимости a используется статистика ta
Описание слайда:
Тест значимости параметров по Стьюденту Статистику tb можно использовать для проверки статистической гипотезы H0: β=β0 против альтернативной гипотезы H1: β≠β0. Наиболее просто выглядит гипотеза H0: β=0 (в генеральной совокупности связи нет). Тогда tb=b/sb~t(n-2), где sb= Зададимся, например 2,5% точкой t-распределения с (n-2) степенями свободы t0,025 , т.е. P(-t0,025 <tb< t0,025 )=0,95 Мы отвергаем гипотезу H0 (и принимаем H1) на 5% уровне значимости, если |tb|>t0,025 («редкое» событие с точки зрения гипотезы H0), в противном случае мы не можем отвергнуть H0 (и принимаем H0). Вероятность найти связь там, где ее на самом деле нет (β=0 , а |tb|>t0,025 ) называется ошибкой первого рода и не превышает уровня значимости. Аналогично для проверки значимости a используется статистика ta

Слайд 44





Тест значимости параметров по Стьюденту
Описание слайда:
Тест значимости параметров по Стьюденту

Слайд 45


Эконометрика. Место эконометрики в управленческом процессе, слайд №45
Описание слайда:

Слайд 46





Доверительные интервалы параметров α и β
Разрешив неравенство P{|(b-β)/Sb|<t0,025}=0,95 относительно β получим
P{b-t0,025*Sb<β<b+t0,025*Sb}=0,95
То есть в интервал [b-t0,025*Sb ;b+t0,025*Sb] истинный параметр β попадет с вероятностью 95%.
Аналогично составляется доверительный интервал для α.
Описание слайда:
Доверительные интервалы параметров α и β Разрешив неравенство P{|(b-β)/Sb|<t0,025}=0,95 относительно β получим P{b-t0,025*Sb<β<b+t0,025*Sb}=0,95 То есть в интервал [b-t0,025*Sb ;b+t0,025*Sb] истинный параметр β попадет с вероятностью 95%. Аналогично составляется доверительный интервал для α.

Слайд 47





Качество модели. Дисперсионный анализ.
Рассмотрим вариацию (разброс) значений yi вокруг своего среднего значения
Описание слайда:
Качество модели. Дисперсионный анализ. Рассмотрим вариацию (разброс) значений yi вокруг своего среднего значения

Слайд 48





Качество модели. Дисперсионный анализ.
Можно доказать, что третье слагаемое равно нулю. 
Тогда
TSS(total)		ESS(error)	         RSS(regression)
Многомерная теорема Пифагора
Описание слайда:
Качество модели. Дисперсионный анализ. Можно доказать, что третье слагаемое равно нулю. Тогда TSS(total) ESS(error) RSS(regression) Многомерная теорема Пифагора

Слайд 49





Качество модели. Дисперсионный анализ.
Описание слайда:
Качество модели. Дисперсионный анализ.

Слайд 50





Проверка значимости уравнения по критерию Фишера
Под незначимостью модели понимается в общем виде одновременное равенство коэффициентов перед всеми факторами x, или, что то же самое, равенство  =a=, и график функции регрессии параллелен оси абсцисс. Тогда .
Проверим данную гипотезу H0:  против H1: 
Для этого составляется статистика Фишера
~F(m,n-m-1), где m-количество факторов в модели, которая сравнивается с табличным значением распределения Фишера Fα(m,n-m-1) для выбранного уровня значимости  α.
Описание слайда:
Проверка значимости уравнения по критерию Фишера Под незначимостью модели понимается в общем виде одновременное равенство коэффициентов перед всеми факторами x, или, что то же самое, равенство =a=, и график функции регрессии параллелен оси абсцисс. Тогда . Проверим данную гипотезу H0: против H1: Для этого составляется статистика Фишера ~F(m,n-m-1), где m-количество факторов в модели, которая сравнивается с табличным значением распределения Фишера Fα(m,n-m-1) для выбранного уровня значимости α.

Слайд 51





Проверка значимости уравнения по критерию Фишера
Описание слайда:
Проверка значимости уравнения по критерию Фишера

Слайд 52


Эконометрика. Место эконометрики в управленческом процессе, слайд №52
Описание слайда:

Слайд 53





Качество модели
Описание слайда:
Качество модели

Слайд 54





Качество модели
Описание слайда:
Качество модели

Слайд 55





Качество модели
Описание слайда:
Качество модели

Слайд 56





Задача
По семи территориям приуральского района известны значения двух показателей за один год
Описание слайда:
Задача По семи территориям приуральского района известны значения двух показателей за один год

Слайд 57


Эконометрика. Место эконометрики в управленческом процессе, слайд №57
Описание слайда:

Слайд 58





Линейная модель на основе МНК
Описание слайда:
Линейная модель на основе МНК

Слайд 59


Эконометрика. Место эконометрики в управленческом процессе, слайд №59
Описание слайда:

Слайд 60





Автокорреляция остатков
Описание слайда:
Автокорреляция остатков

Слайд 61





Критерий Дарбина-Уотсона (тест автокорреляции остатков)
Описание слайда:
Критерий Дарбина-Уотсона (тест автокорреляции остатков)

Слайд 62





Критерий Дарбина-Уотсона (тест автокорреляции остатков)
Описание слайда:
Критерий Дарбина-Уотсона (тест автокорреляции остатков)

Слайд 63


Эконометрика. Место эконометрики в управленческом процессе, слайд №63
Описание слайда:

Слайд 64





Критерий Дарбина-Уотсона (неправильный расчет)
Описание слайда:
Критерий Дарбина-Уотсона (неправильный расчет)

Слайд 65





Критерий Дарбина-Уотсона (верный расчет)
Описание слайда:
Критерий Дарбина-Уотсона (верный расчет)

Слайд 66





Задача
Описание слайда:
Задача



Похожие презентации
Mypresentation.ru
Загрузить презентацию