🗊Презентация Факторы. Лекция 3

Категория: Математика
Нажмите для полного просмотра!
Факторы. Лекция 3, слайд №1Факторы. Лекция 3, слайд №2Факторы. Лекция 3, слайд №3Факторы. Лекция 3, слайд №4Факторы. Лекция 3, слайд №5Факторы. Лекция 3, слайд №6Факторы. Лекция 3, слайд №7Факторы. Лекция 3, слайд №8Факторы. Лекция 3, слайд №9Факторы. Лекция 3, слайд №10Факторы. Лекция 3, слайд №11Факторы. Лекция 3, слайд №12Факторы. Лекция 3, слайд №13Факторы. Лекция 3, слайд №14Факторы. Лекция 3, слайд №15Факторы. Лекция 3, слайд №16Факторы. Лекция 3, слайд №17Факторы. Лекция 3, слайд №18Факторы. Лекция 3, слайд №19Факторы. Лекция 3, слайд №20Факторы. Лекция 3, слайд №21Факторы. Лекция 3, слайд №22Факторы. Лекция 3, слайд №23Факторы. Лекция 3, слайд №24Факторы. Лекция 3, слайд №25Факторы. Лекция 3, слайд №26Факторы. Лекция 3, слайд №27Факторы. Лекция 3, слайд №28Факторы. Лекция 3, слайд №29Факторы. Лекция 3, слайд №30Факторы. Лекция 3, слайд №31Факторы. Лекция 3, слайд №32Факторы. Лекция 3, слайд №33Факторы. Лекция 3, слайд №34Факторы. Лекция 3, слайд №35Факторы. Лекция 3, слайд №36Факторы. Лекция 3, слайд №37Факторы. Лекция 3, слайд №38Факторы. Лекция 3, слайд №39Факторы. Лекция 3, слайд №40Факторы. Лекция 3, слайд №41Факторы. Лекция 3, слайд №42Факторы. Лекция 3, слайд №43Факторы. Лекция 3, слайд №44Факторы. Лекция 3, слайд №45Факторы. Лекция 3, слайд №46Факторы. Лекция 3, слайд №47Факторы. Лекция 3, слайд №48Факторы. Лекция 3, слайд №49Факторы. Лекция 3, слайд №50Факторы. Лекция 3, слайд №51Факторы. Лекция 3, слайд №52Факторы. Лекция 3, слайд №53Факторы. Лекция 3, слайд №54Факторы. Лекция 3, слайд №55Факторы. Лекция 3, слайд №56Факторы. Лекция 3, слайд №57Факторы. Лекция 3, слайд №58Факторы. Лекция 3, слайд №59Факторы. Лекция 3, слайд №60Факторы. Лекция 3, слайд №61Факторы. Лекция 3, слайд №62Факторы. Лекция 3, слайд №63Факторы. Лекция 3, слайд №64Факторы. Лекция 3, слайд №65Факторы. Лекция 3, слайд №66Факторы. Лекция 3, слайд №67

Содержание

Вы можете ознакомиться и скачать презентацию на тему Факторы. Лекция 3. Доклад-сообщение содержит 67 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Факторы. Лекция 3, слайд №1
Описание слайда:

Слайд 2





         Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. 
         Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. 
         Факторы соответствуют способам воздействия на объект исследования. 
         Каждый фактор имеет область определения. Под областью определения фактора понимается совокупность всех значений, которые в принципе может принимать данный фактор. 
         Совокупность значений фактора, которая используется в эксперименте, является подмножеством из множества значений, образующих область определения. 
        Область определения может быть непрерывной или дискретной. 
         Факторы разделяются на количественные и качественные. 
        Качественные факторы – это разные вещества, разные технологические способы, аппараты, исполнители и т.д.
Описание слайда:
Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Фактором называется измеряемая переменная величина, принимающая в некоторый момент времени определенное значение. Факторы соответствуют способам воздействия на объект исследования. Каждый фактор имеет область определения. Под областью определения фактора понимается совокупность всех значений, которые в принципе может принимать данный фактор. Совокупность значений фактора, которая используется в эксперименте, является подмножеством из множества значений, образующих область определения. Область определения может быть непрерывной или дискретной. Факторы разделяются на количественные и качественные. Качественные факторы – это разные вещества, разные технологические способы, аппараты, исполнители и т.д.

Слайд 3





Требования, предъявляемые к факторам при планировании эксперимента
Требования, предъявляемые к факторам при планировании эксперимента
        При планировании эксперимента факторы должны быть управляемыми. Это значит, что экспериментатор, выбрав нужное значение фактора, может его поддерживать постоянным в течение всего опыта, т.е. может управлять фактором. В этом состоит особенность «активного» эксперимента. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора.
Описание слайда:
Требования, предъявляемые к факторам при планировании эксперимента Требования, предъявляемые к факторам при планировании эксперимента При планировании эксперимента факторы должны быть управляемыми. Это значит, что экспериментатор, выбрав нужное значение фактора, может его поддерживать постоянным в течение всего опыта, т.е. может управлять фактором. В этом состоит особенность «активного» эксперимента. Планировать эксперимент можно только в том случае, если уровни факторов подчиняются воле экспериментатора.

Слайд 4





        Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни).
        Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни).
        Такое определение фактора будем называть операциональным. Введение операционального определения обеспечивает однозначное понимание фактора. С операциональным определением связаны выбор размерности фактора и точность его фиксирования.
Описание слайда:
Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни). Чтобы точно определить фактор, нужно указать последовательность действий (операций), с помощью которых устанавливаются его конкретные значения (уровни). Такое определение фактора будем называть операциональным. Введение операционального определения обеспечивает однозначное понимание фактора. С операциональным определением связаны выбор размерности фактора и точность его фиксирования.

Слайд 5





         Иногда выбор размерности превращается в весьма трудную проблему выбора измерительных шкал. Замена одной измерительной шкалы другой называется преобразованием шкал. 
         Иногда выбор размерности превращается в весьма трудную проблему выбора измерительных шкал. Замена одной измерительной шкалы другой называется преобразованием шкал. 
Точность замера факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. При изучении процесса, который длится десятки часов, нет необходимости учитывать доли минуты, а в быстрых процессах необходимо учитывать, быть может, доли секунды.
Факторы должны быть непосредственными воздействиями на объект. Факторы должны быть однозначны. Трудно управлять фактором, который, является функцией других факторов. Но в планировании могут участвовать сложные факторы, такие, как соотношения между компонентами, их логарифмы и т.п.
Описание слайда:
Иногда выбор размерности превращается в весьма трудную проблему выбора измерительных шкал. Замена одной измерительной шкалы другой называется преобразованием шкал. Иногда выбор размерности превращается в весьма трудную проблему выбора измерительных шкал. Замена одной измерительной шкалы другой называется преобразованием шкал. Точность замера факторов должна быть возможно более высокой. Степень точности определяется диапазоном изменения факторов. При изучении процесса, который длится десятки часов, нет необходимости учитывать доли минуты, а в быстрых процессах необходимо учитывать, быть может, доли секунды. Факторы должны быть непосредственными воздействиями на объект. Факторы должны быть однозначны. Трудно управлять фактором, который, является функцией других факторов. Но в планировании могут участвовать сложные факторы, такие, как соотношения между компонентами, их логарифмы и т.п.

Слайд 6





Требования к совокупности факторов
        При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов. 

     Первое требование-требование совместимости
        Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование. Представьте себе, что вы поступили легкомысленно, не обратили внимания на требование совместимости факторов и запланировали такие условия опыта, которые могут привести к взрыву установки. Согласитесь, что такой результат очень далек от целей оптимизации.
Описание слайда:
Требования к совокупности факторов При планировании эксперимента обычно одновременно изменяется несколько факторов. Поэтому очень важно сформулировать требования, которые предъявляются к совокупности факторов. Первое требование-требование совместимости Совместимость факторов означает, что все их комбинации осуществимы и безопасны. Это очень важное требование. Представьте себе, что вы поступили легкомысленно, не обратили внимания на требование совместимости факторов и запланировали такие условия опыта, которые могут привести к взрыву установки. Согласитесь, что такой результат очень далек от целей оптимизации.

Слайд 7





       Независимость факторов, т.е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. 
       Независимость факторов, т.е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. 
        Второе требование – отсутствию корреляции между факторами. Требование некоррелированности не означает, что между значениями факторов нет никакой связи. Достаточно, чтобы связь не была линейной.
Описание слайда:
Независимость факторов, т.е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. Независимость факторов, т.е. возможность установления фактора на любом уровне вне зависимости от уровней других факторов. Если это условие невыполнимо, то невозможно планировать эксперимент. Второе требование – отсутствию корреляции между факторами. Требование некоррелированности не означает, что между значениями факторов нет никакой связи. Достаточно, чтобы связь не была линейной.

Слайд 8


Факторы. Лекция 3, слайд №8
Описание слайда:

Слайд 9





           Под моделью будем понимать вид функции отклика у =(х1, х2, ..., хk). 
           Под моделью будем понимать вид функции отклика у =(х1, х2, ..., хk). 
      ВЫБРАТЬ МОДЕЛЬ – ЗНАЧИТ ВЫБРАТЬ ВИД ЭТОЙ ФУНКЦИИ, ЗАПИСАТЬ ЕЕ УРАВНЕНИЕ. ТОГДА ОСТАНЕТСЯ СПЛАНИРОВАТЬ И ПРОВЕСТИ ЭКСПЕРИМЕНТ ДЛЯ ОЦЕНКИ ЧИСЛЕННЫХ ЗНАЧЕНИЙ КОНСТАНТ (КОЭФФИЦИЕНТОВ) ЭТОГО УРАВНЕНИЯ. 
Но как выбрать модель? 
        Сначала построим геометрический аналог функции отклика – поверхность отклика. Для наглядности рассматривать случай с двумя факторами.
Описание слайда:
Под моделью будем понимать вид функции отклика у =(х1, х2, ..., хk). Под моделью будем понимать вид функции отклика у =(х1, х2, ..., хk). ВЫБРАТЬ МОДЕЛЬ – ЗНАЧИТ ВЫБРАТЬ ВИД ЭТОЙ ФУНКЦИИ, ЗАПИСАТЬ ЕЕ УРАВНЕНИЕ. ТОГДА ОСТАНЕТСЯ СПЛАНИРОВАТЬ И ПРОВЕСТИ ЭКСПЕРИМЕНТ ДЛЯ ОЦЕНКИ ЧИСЛЕННЫХ ЗНАЧЕНИЙ КОНСТАНТ (КОЭФФИЦИЕНТОВ) ЭТОГО УРАВНЕНИЯ. Но как выбрать модель? Сначала построим геометрический аналог функции отклика – поверхность отклика. Для наглядности рассматривать случай с двумя факторами.

Слайд 10





Мы хотим изобразить геометрически возможные состояния «черного ящика» с двумя входами. Для этого достаточно располагать плоскостью с обычной декартовой системой координат. По одной оси координат будем откладывать в некотором масштабе значения (уровни) одного фактора, а по другой оси – второго. Тогда каждому состоянию «ящика» будет соответствовать точка на плоскости (рис. 11). 
Мы хотим изобразить геометрически возможные состояния «черного ящика» с двумя входами. Для этого достаточно располагать плоскостью с обычной декартовой системой координат. По одной оси координат будем откладывать в некотором масштабе значения (уровни) одного фактора, а по другой оси – второго. Тогда каждому состоянию «ящика» будет соответствовать точка на плоскости (рис. 11). 

Если факторы совместимы, то границы образуют на плоскости некоторый прямоугольник, внутри которого лежат точки, соответствующие состояниям «черного ящика». 

Пунктирными линиями обозначены границы областей определения каждого из факторов, а сплошными – границы их совместной области определения. Чтобы указать значение параметра оптимизации, требуется еще одна ось координат. Если ее построить, то поверхность отклика будет выглядеть так, как на рис. 12. 
ПРОСТРАНСТВО, В КОТОРОМ СТРОИТСЯ ПОВЕРХНОСТЬ ОТКЛИКА, МЫ БУДЕМ НАЗЫВАТЬ ФАКТОРНЫМ ПРОСТРАНСТВОМ. ОНО ЗАДАЕТСЯ КООРДИНАТНЫМИ ОСЯМИ, ПО КОТОРЫМ ОТКЛАДЫВАЮТСЯ ЗНАЧЕНИЯ ФАКТОРОВ И ПАРАМЕТРА ОПТИМИЗАЦИИ. 

Размерность факторного пространства зависит от числа факторов. При многих факторах поверхность отклика уже нельзя изобразить наглядно и приходится ограничиваться только алгебраическим языком.
Описание слайда:
Мы хотим изобразить геометрически возможные состояния «черного ящика» с двумя входами. Для этого достаточно располагать плоскостью с обычной декартовой системой координат. По одной оси координат будем откладывать в некотором масштабе значения (уровни) одного фактора, а по другой оси – второго. Тогда каждому состоянию «ящика» будет соответствовать точка на плоскости (рис. 11). Мы хотим изобразить геометрически возможные состояния «черного ящика» с двумя входами. Для этого достаточно располагать плоскостью с обычной декартовой системой координат. По одной оси координат будем откладывать в некотором масштабе значения (уровни) одного фактора, а по другой оси – второго. Тогда каждому состоянию «ящика» будет соответствовать точка на плоскости (рис. 11). Если факторы совместимы, то границы образуют на плоскости некоторый прямоугольник, внутри которого лежат точки, соответствующие состояниям «черного ящика». Пунктирными линиями обозначены границы областей определения каждого из факторов, а сплошными – границы их совместной области определения. Чтобы указать значение параметра оптимизации, требуется еще одна ось координат. Если ее построить, то поверхность отклика будет выглядеть так, как на рис. 12. ПРОСТРАНСТВО, В КОТОРОМ СТРОИТСЯ ПОВЕРХНОСТЬ ОТКЛИКА, МЫ БУДЕМ НАЗЫВАТЬ ФАКТОРНЫМ ПРОСТРАНСТВОМ. ОНО ЗАДАЕТСЯ КООРДИНАТНЫМИ ОСЯМИ, ПО КОТОРЫМ ОТКЛАДЫВАЮТСЯ ЗНАЧЕНИЯ ФАКТОРОВ И ПАРАМЕТРА ОПТИМИЗАЦИИ. Размерность факторного пространства зависит от числа факторов. При многих факторах поверхность отклика уже нельзя изобразить наглядно и приходится ограничиваться только алгебраическим языком.

Слайд 11





Но для двух факторов можно даже не переходить к трехмерному пространству, а ограничиться плоскостью. Для этого достаточно произвести сечение поверхности отклика плоскостями, параллельными плоскости X1ОX2, и полученные в сечениях линии спроектировать на эту плоскость. Так строят, например, изображения гор и морских впадин на географических картах.;
Но для двух факторов можно даже не переходить к трехмерному пространству, а ограничиться плоскостью. Для этого достаточно произвести сечение поверхности отклика плоскостями, параллельными плоскости X1ОX2, и полученные в сечениях линии спроектировать на эту плоскость. Так строят, например, изображения гор и морских впадин на географических картах.;

Размерность факторного пространства зависит от числа факторов. При многих факторах поверхность отклика уже нельзя изобразить наглядно и приходится ограничиваться только алгебраическим языком.
Описание слайда:
Но для двух факторов можно даже не переходить к трехмерному пространству, а ограничиться плоскостью. Для этого достаточно произвести сечение поверхности отклика плоскостями, параллельными плоскости X1ОX2, и полученные в сечениях линии спроектировать на эту плоскость. Так строят, например, изображения гор и морских впадин на географических картах.; Но для двух факторов можно даже не переходить к трехмерному пространству, а ограничиться плоскостью. Для этого достаточно произвести сечение поверхности отклика плоскостями, параллельными плоскости X1ОX2, и полученные в сечениях линии спроектировать на эту плоскость. Так строят, например, изображения гор и морских впадин на географических картах.; Размерность факторного пространства зависит от числа факторов. При многих факторах поверхность отклика уже нельзя изобразить наглядно и приходится ограничиваться только алгебраическим языком.

Слайд 12





Точка М на рисунке – это и есть та оптимальная точка, которую мы ищем. Каждая линия соответствует постоянному значению параметра оптимизации называется линией равного отклика. 
Точка М на рисунке – это и есть та оптимальная точка, которую мы ищем. Каждая линия соответствует постоянному значению параметра оптимизации называется линией равного отклика. 
Существует соответствие между состоянием «ящика» и значением параметра оптимизации: каждому возможному состоянию «ящика» соответствует одно значение параметра оптимизации. Однако обратное неверно: одному возможному значению параметра оптимизации может соответствовать и одно, и несколько; и сколько угодно состояний «ящиков». 
Как ставить эксперимент, чтобы найти оптимум при минимуме затрат? 
Это прежде всего вопрос стратегии.
Описание слайда:
Точка М на рисунке – это и есть та оптимальная точка, которую мы ищем. Каждая линия соответствует постоянному значению параметра оптимизации называется линией равного отклика. Точка М на рисунке – это и есть та оптимальная точка, которую мы ищем. Каждая линия соответствует постоянному значению параметра оптимизации называется линией равного отклика. Существует соответствие между состоянием «ящика» и значением параметра оптимизации: каждому возможному состоянию «ящика» соответствует одно значение параметра оптимизации. Однако обратное неверно: одному возможному значению параметра оптимизации может соответствовать и одно, и несколько; и сколько угодно состояний «ящиков». Как ставить эксперимент, чтобы найти оптимум при минимуме затрат? Это прежде всего вопрос стратегии.

Слайд 13





Как выбрать модель???
Модели бывают разные. Моделей бывает много. Чтобы выбрать одну из них, надо понять, что мы хотим от модели, какие требования мы к ней предъявляем. 

Главное требование к модели – это способность предсказывать направление дальнейших опытов, причем предсказывать с требуемой точностью. Так как до получения модели мы не знаем, какое направление нам понадобится, то естественно требовать, чтобы точность предсказания во всех возможных направлениях была одинакова.
Описание слайда:
Как выбрать модель??? Модели бывают разные. Моделей бывает много. Чтобы выбрать одну из них, надо понять, что мы хотим от модели, какие требования мы к ней предъявляем. Главное требование к модели – это способность предсказывать направление дальнейших опытов, причем предсказывать с требуемой точностью. Так как до получения модели мы не знаем, какое направление нам понадобится, то естественно требовать, чтобы точность предсказания во всех возможных направлениях была одинакова.

Слайд 14





       В некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического больше чем на некоторую заранее заданную величину.
       В некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического больше чем на некоторую заранее заданную величину.
       Модель, которая удовлетворяет такому или какому–либо аналогичному требованию, называется адекватной. Проверка выполнимости этого требования называется проверкой адекватности модели.
Описание слайда:
В некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического больше чем на некоторую заранее заданную величину. В некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического больше чем на некоторую заранее заданную величину. Модель, которая удовлетворяет такому или какому–либо аналогичному требованию, называется адекватной. Проверка выполнимости этого требования называется проверкой адекватности модели.

Слайд 15





      Если несколько различных моделей отвечают нужным требованиям, то следует предпочесть ту из них, которая является самой простой!!! 
      Если несколько различных моделей отвечают нужным требованиям, то следует предпочесть ту из них, которая является самой простой!!!
Описание слайда:
Если несколько различных моделей отвечают нужным требованиям, то следует предпочесть ту из них, которая является самой простой!!! Если несколько различных моделей отвечают нужным требованиям, то следует предпочесть ту из них, которая является самой простой!!!

Слайд 16





Если рассмотреть логарифмическую функцую. На некотором отрезке [хmin, xmax] она с удовлетворительной точностью описывается двумя уравнениями: 
Если рассмотреть логарифмическую функцую. На некотором отрезке [хmin, xmax] она с удовлетворительной точностью описывается двумя уравнениями: 
y=logbx, 
у=bх. 
Во втором уравнении b – коэффициент, который мы можем оценить, например, по результатам эксперимента. Какое из уравнений, по вашему мнению, проще? 
Простота – вещь относительная. Если вы заранее не сформулируете точно, что называется простым, а что сложным, то невозможно произвести выбор. Вот почему на наш вопрос не было никакого другого ответа, кроме «не знаю». 
При прочих равных условиях мы всегда будем предпочитать степенные ряды. Точнее, отрезки степенных рядов – алгебраические полиномы. При таком соглашении можно сказать, что второе уравнение проще.
Описание слайда:
Если рассмотреть логарифмическую функцую. На некотором отрезке [хmin, xmax] она с удовлетворительной точностью описывается двумя уравнениями: Если рассмотреть логарифмическую функцую. На некотором отрезке [хmin, xmax] она с удовлетворительной точностью описывается двумя уравнениями: y=logbx, у=bх. Во втором уравнении b – коэффициент, который мы можем оценить, например, по результатам эксперимента. Какое из уравнений, по вашему мнению, проще? Простота – вещь относительная. Если вы заранее не сформулируете точно, что называется простым, а что сложным, то невозможно произвести выбор. Вот почему на наш вопрос не было никакого другого ответа, кроме «не знаю». При прочих равных условиях мы всегда будем предпочитать степенные ряды. Точнее, отрезки степенных рядов – алгебраические полиномы. При таком соглашении можно сказать, что второе уравнение проще.

Слайд 17





       Итак, мы представили неизвестную нам функцию отклика полиномом. 
       Итак, мы представили неизвестную нам функцию отклика полиномом. 
Операция замены одной функции другой, в каком-то смысле эквивалентной функцией называется аппроксимацией. Значит, мы аппроксимировали неизвестную функцию полиномом.
Описание слайда:
Итак, мы представили неизвестную нам функцию отклика полиномом. Итак, мы представили неизвестную нам функцию отклика полиномом. Операция замены одной функции другой, в каком-то смысле эквивалентной функцией называется аппроксимацией. Значит, мы аппроксимировали неизвестную функцию полиномом.

Слайд 18





НО ПОЛИНОМЫ БЫВАЮТ РАЗНЫХ СТЕПЕНЕЙ. КАКОЙ ВЗЯТЬ НА ПЕРВОМ ШАГЕ? 
НО ПОЛИНОМЫ БЫВАЮТ РАЗНЫХ СТЕПЕНЕЙ. КАКОЙ ВЗЯТЬ НА ПЕРВОМ ШАГЕ? 
         Эксперимент нужен только для того, чтобы найти численные значения коэффициентов полинома. Надо найти такой полином, который содержит как можно меньше коэффициентов, но удовлетворяет требованиям, предъявленным к модели. Чем ниже степень полинома при заданном числе факторов, тем меньше в нем коэффициентов.
Описание слайда:
НО ПОЛИНОМЫ БЫВАЮТ РАЗНЫХ СТЕПЕНЕЙ. КАКОЙ ВЗЯТЬ НА ПЕРВОМ ШАГЕ? НО ПОЛИНОМЫ БЫВАЮТ РАЗНЫХ СТЕПЕНЕЙ. КАКОЙ ВЗЯТЬ НА ПЕРВОМ ШАГЕ? Эксперимент нужен только для того, чтобы найти численные значения коэффициентов полинома. Надо найти такой полином, который содержит как можно меньше коэффициентов, но удовлетворяет требованиям, предъявленным к модели. Чем ниже степень полинома при заданном числе факторов, тем меньше в нем коэффициентов.

Слайд 19





Модель должна хорошо предсказывать направление наискорейшего улучшения параметра оптимизации. Такое направление называется направлением градиента. 
Модель должна хорошо предсказывать направление наискорейшего улучшения параметра оптимизации. Такое направление называется направлением градиента. 
Если выбрать линейную модель - С одной стороны, она содержит информацию о направлении градиента, с другой – в ней минимально возможное число коэффициентов при данном числе факторов. Единственное опасение в том, что неясно, будет ли линейная модель всегда адекватной. 
Вопрос в том, как выбрать подобласть в факторном пространстве, чтобы линейная модель оказалась адекватной. 
Условие аналитичности функции отклика гарантирует нам эту возможность. Всегда существует такая окрестность любой точки (точнее, почти любой точки), в которой линейная модель адекватна. Размер такой области заранее не известен, но адекватность, как вы помните, можно проверять по результатам эксперимента. Значит, выбрав сначала произвольную подобласть, мы, рано или поздно, найдем ее требуемые размеры. И как только это случится, воспользуемся движением по градиенту.
Описание слайда:
Модель должна хорошо предсказывать направление наискорейшего улучшения параметра оптимизации. Такое направление называется направлением градиента. Модель должна хорошо предсказывать направление наискорейшего улучшения параметра оптимизации. Такое направление называется направлением градиента. Если выбрать линейную модель - С одной стороны, она содержит информацию о направлении градиента, с другой – в ней минимально возможное число коэффициентов при данном числе факторов. Единственное опасение в том, что неясно, будет ли линейная модель всегда адекватной. Вопрос в том, как выбрать подобласть в факторном пространстве, чтобы линейная модель оказалась адекватной. Условие аналитичности функции отклика гарантирует нам эту возможность. Всегда существует такая окрестность любой точки (точнее, почти любой точки), в которой линейная модель адекватна. Размер такой области заранее не известен, но адекватность, как вы помните, можно проверять по результатам эксперимента. Значит, выбрав сначала произвольную подобласть, мы, рано или поздно, найдем ее требуемые размеры. И как только это случится, воспользуемся движением по градиенту.

Слайд 20





        На следующем этапе мы будем искать линейную модель уже в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали в область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Либо попаданием в почти стационарную область задача решена, либо надо переходить к полиномам более высоких степеней, например второй степени, чтобы подробнее описать область оптимума. 
        На следующем этапе мы будем искать линейную модель уже в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали в область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Либо попаданием в почти стационарную область задача решена, либо надо переходить к полиномам более высоких степеней, например второй степени, чтобы подробнее описать область оптимума.
Описание слайда:
На следующем этапе мы будем искать линейную модель уже в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали в область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Либо попаданием в почти стационарную область задача решена, либо надо переходить к полиномам более высоких степеней, например второй степени, чтобы подробнее описать область оптимума. На следующем этапе мы будем искать линейную модель уже в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали в область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Либо попаданием в почти стационарную область задача решена, либо надо переходить к полиномам более высоких степеней, например второй степени, чтобы подробнее описать область оптимума.

Слайд 21





Удачный выбор подобласти имеет, как вы видите, большое значение для успеха всей работы. Он связан с интуитивными решениями, которые принимает экспериментатор на каждом этапе. 
Удачный выбор подобласти имеет, как вы видите, большое значение для успеха всей работы. Он связан с интуитивными решениями, которые принимает экспериментатор на каждом этапе. 


Кроме задачи оптимизации, иногда возникает задача построения интерполяционной модели. В этом случае нас не интересует оптимум. Просто мы хотим предсказывать результат с требуемой точностью во всех точках некоторой заранее заданной области.
Описание слайда:
Удачный выбор подобласти имеет, как вы видите, большое значение для успеха всей работы. Он связан с интуитивными решениями, которые принимает экспериментатор на каждом этапе. Удачный выбор подобласти имеет, как вы видите, большое значение для успеха всей работы. Он связан с интуитивными решениями, которые принимает экспериментатор на каждом этапе. Кроме задачи оптимизации, иногда возникает задача построения интерполяционной модели. В этом случае нас не интересует оптимум. Просто мы хотим предсказывать результат с требуемой точностью во всех точках некоторой заранее заданной области.

Слайд 22





Принятие решений перед планированием эксперимента

При выборе области эксперимента прежде всего надо оценить границы областей определения факторов. 
При этом должны учитываться ограничения нескольких типов.
Описание слайда:
Принятие решений перед планированием эксперимента При выборе области эксперимента прежде всего надо оценить границы областей определения факторов. При этом должны учитываться ограничения нескольких типов.

Слайд 23





Первый тип – принципиальные ограничения для значений факторов, которые не могут быть нарушены ни при каких обстоятельствах. Например, если фактор – температура, то нижним пределом будет абсолютный нуль. 
Первый тип – принципиальные ограничения для значений факторов, которые не могут быть нарушены ни при каких обстоятельствах. Например, если фактор – температура, то нижним пределом будет абсолютный нуль. 
Второй тип – ограничения, связанные с технико-экономическими соображениями, например, со стоимостью сырья, дефицитностью отдельных компонентов, временем ведения процесса. 
Третий тип ограничений, с которым чаще всего приходится иметь дело, определяется конкретными условиями проведения процесса, Например, существующей аппаратурой, технологией, организацией. В реакторе, изготовленном из некоторого материала, температуру нельзя поднять выше температуры плавления этого материала или выше рабочей температуры данного катализатора.
Описание слайда:
Первый тип – принципиальные ограничения для значений факторов, которые не могут быть нарушены ни при каких обстоятельствах. Например, если фактор – температура, то нижним пределом будет абсолютный нуль. Первый тип – принципиальные ограничения для значений факторов, которые не могут быть нарушены ни при каких обстоятельствах. Например, если фактор – температура, то нижним пределом будет абсолютный нуль. Второй тип – ограничения, связанные с технико-экономическими соображениями, например, со стоимостью сырья, дефицитностью отдельных компонентов, временем ведения процесса. Третий тип ограничений, с которым чаще всего приходится иметь дело, определяется конкретными условиями проведения процесса, Например, существующей аппаратурой, технологией, организацией. В реакторе, изготовленном из некоторого материала, температуру нельзя поднять выше температуры плавления этого материала или выше рабочей температуры данного катализатора.

Слайд 24





Оптимизация обычно начинается в условиях, когда объект уже подвергался некоторым исследованиям. Информацию, содержащуюся в результатах предыдущих исследований, будем называть априорной (т.е. полученной до начала эксперимента). 
Оптимизация обычно начинается в условиях, когда объект уже подвергался некоторым исследованиям. Информацию, содержащуюся в результатах предыдущих исследований, будем называть априорной (т.е. полученной до начала эксперимента). 
Итак, выбор экспериментальной области факторного пространства связан с тщательным анализом априорной информации. 
Далее в области определения надо найти локальную подобласть для планирования эксперимента.
Описание слайда:
Оптимизация обычно начинается в условиях, когда объект уже подвергался некоторым исследованиям. Информацию, содержащуюся в результатах предыдущих исследований, будем называть априорной (т.е. полученной до начала эксперимента). Оптимизация обычно начинается в условиях, когда объект уже подвергался некоторым исследованиям. Информацию, содержащуюся в результатах предыдущих исследований, будем называть априорной (т.е. полученной до начала эксперимента). Итак, выбор экспериментальной области факторного пространства связан с тщательным анализом априорной информации. Далее в области определения надо найти локальную подобласть для планирования эксперимента.

Слайд 25





Процедура выбора этой подобласти включает два этапа: 
Процедура выбора этой подобласти включает два этапа: 


выбор основного уровня; 
выбор интервалов варьирования.
Описание слайда:
Процедура выбора этой подобласти включает два этапа: Процедура выбора этой подобласти включает два этапа: выбор основного уровня; выбор интервалов варьирования.

Слайд 26





      . Наилучшим условиям, определенным из анализа априорной информации, соответствует комбинация (или несколько комбинаций) уровней факторов. Каждая комбинация рассматривается как исходная точка для построения плана эксперимента. Назовем ее основным (нулевым) уровнем. Построение плана эксперимента сводится к выбору экспериментальных точек, симметричных относительно нулевого уровня.
      . Наилучшим условиям, определенным из анализа априорной информации, соответствует комбинация (или несколько комбинаций) уровней факторов. Каждая комбинация рассматривается как исходная точка для построения плана эксперимента. Назовем ее основным (нулевым) уровнем. Построение плана эксперимента сводится к выбору экспериментальных точек, симметричных относительно нулевого уровня.
Описание слайда:
. Наилучшим условиям, определенным из анализа априорной информации, соответствует комбинация (или несколько комбинаций) уровней факторов. Каждая комбинация рассматривается как исходная точка для построения плана эксперимента. Назовем ее основным (нулевым) уровнем. Построение плана эксперимента сводится к выбору экспериментальных точек, симметричных относительно нулевого уровня. . Наилучшим условиям, определенным из анализа априорной информации, соответствует комбинация (или несколько комбинаций) уровней факторов. Каждая комбинация рассматривается как исходная точка для построения плана эксперимента. Назовем ее основным (нулевым) уровнем. Построение плана эксперимента сводится к выбору экспериментальных точек, симметричных относительно нулевого уровня.

Слайд 27





На рис. 18 изображена область определения для двух факторов. Кружком отмечены наилучшие условия, известные из априорной информации. Известно также, что имеется возможность дальнейшего улучшения параметра оптимизации, а данное значение нас не удовлетворяет. Эту точку нельзя рассматривать в качестве основного уровня.
На рис. 18 изображена область определения для двух факторов. Кружком отмечены наилучшие условия, известные из априорной информации. Известно также, что имеется возможность дальнейшего улучшения параметра оптимизации, а данное значение нас не удовлетворяет. Эту точку нельзя рассматривать в качестве основного уровня.
Дело в том, что она расположена на границе области определения. Требование симметрии экспериментальных точек относительно нулевого уровня привело бы в этом случае к выходу за границы области определения, чего делать также нельзя. 
Резюмируем наши рассуждения о принятии решений при выборе основного уровня. 
После того как нулевой уровень выбран, переходим к следующему шагу – выбору интервалов варьирования.
Описание слайда:
На рис. 18 изображена область определения для двух факторов. Кружком отмечены наилучшие условия, известные из априорной информации. Известно также, что имеется возможность дальнейшего улучшения параметра оптимизации, а данное значение нас не удовлетворяет. Эту точку нельзя рассматривать в качестве основного уровня. На рис. 18 изображена область определения для двух факторов. Кружком отмечены наилучшие условия, известные из априорной информации. Известно также, что имеется возможность дальнейшего улучшения параметра оптимизации, а данное значение нас не удовлетворяет. Эту точку нельзя рассматривать в качестве основного уровня. Дело в том, что она расположена на границе области определения. Требование симметрии экспериментальных точек относительно нулевого уровня привело бы в этом случае к выходу за границы области определения, чего делать также нельзя. Резюмируем наши рассуждения о принятии решений при выборе основного уровня. После того как нулевой уровень выбран, переходим к следующему шагу – выбору интервалов варьирования.

Слайд 28





Выбор интервалов варьирования. Для каждого фактора выбрать два уровня, на которых он будет варьироваться в эксперименте. 
Выбор интервалов варьирования. Для каждого фактора выбрать два уровня, на которых он будет варьироваться в эксперименте. 
Интервал варьирования – это расстояние на координатной оси между основным и верхним (или нижним) уровнем. Таким образом, задача выбора уровней сводится к более простой задаче выбора интервала варьирования.
Описание слайда:
Выбор интервалов варьирования. Для каждого фактора выбрать два уровня, на которых он будет варьироваться в эксперименте. Выбор интервалов варьирования. Для каждого фактора выбрать два уровня, на которых он будет варьироваться в эксперименте. Интервал варьирования – это расстояние на координатной оси между основным и верхним (или нижним) уровнем. Таким образом, задача выбора уровней сводится к более простой задаче выбора интервала варьирования.

Слайд 29





        Заметим еще, что для упрощения записи условий эксперимента и обработки экспериментальных данных масштабы по осям выбираются так, чтобы верхний уровень соответствовал +1, нижний –1, а основной – нулю. Для факторов с непрерывной областью определения это всегда можно сделать с помощью преобразования , где  нормированное значение фактора, Х – натуральное значение фактора; Х0 – натуральное значение основного уровня фактора; dx – интервал варьирования фактора.
        Заметим еще, что для упрощения записи условий эксперимента и обработки экспериментальных данных масштабы по осям выбираются так, чтобы верхний уровень соответствовал +1, нижний –1, а основной – нулю. Для факторов с непрерывной областью определения это всегда можно сделать с помощью преобразования , где  нормированное значение фактора, Х – натуральное значение фактора; Х0 – натуральное значение основного уровня фактора; dx – интервал варьирования фактора.
Описание слайда:
Заметим еще, что для упрощения записи условий эксперимента и обработки экспериментальных данных масштабы по осям выбираются так, чтобы верхний уровень соответствовал +1, нижний –1, а основной – нулю. Для факторов с непрерывной областью определения это всегда можно сделать с помощью преобразования , где нормированное значение фактора, Х – натуральное значение фактора; Х0 – натуральное значение основного уровня фактора; dx – интервал варьирования фактора. Заметим еще, что для упрощения записи условий эксперимента и обработки экспериментальных данных масштабы по осям выбираются так, чтобы верхний уровень соответствовал +1, нижний –1, а основной – нулю. Для факторов с непрерывной областью определения это всегда можно сделать с помощью преобразования , где нормированное значение фактора, Х – натуральное значение фактора; Х0 – натуральное значение основного уровня фактора; dx – интервал варьирования фактора.

Слайд 30





Для качественных факторов, имеющих два уровня, один уровень обозначается +1, а другой – 1; порядок уровней не имеет значения. 
Для качественных факторов, имеющих два уровня, один уровень обозначается +1, а другой – 1; порядок уровней не имеет значения. 
Пусть процесс определяется четырьмя факторами. Основной уровень и интервалы варьирования выбраны следующим образом. 
Основной уровень           3           30             1,5                   15
Интервал варьирования  2           10             1                      10
Остановимся на первом факторе. Отметим на координатной оси три уровня: нижний, основной и верхний. 
Натуральные значения        1          2             3                5
Кодированные значения   –1          ×             0              +1
Нужно найти кодированное значение для х1 = 2,0. Это значение лежит между 1,0 и 3,0, т.е. между – 1 и 0 в кодированном масштабе. Так как в натуральном масштабе 2,0 лежит посередине между 1,0 и 3,0; то ему соответствует – 0,5 в кодированном масштабе.
Описание слайда:
Для качественных факторов, имеющих два уровня, один уровень обозначается +1, а другой – 1; порядок уровней не имеет значения. Для качественных факторов, имеющих два уровня, один уровень обозначается +1, а другой – 1; порядок уровней не имеет значения. Пусть процесс определяется четырьмя факторами. Основной уровень и интервалы варьирования выбраны следующим образом. Основной уровень 3 30 1,5 15 Интервал варьирования 2 10 1 10 Остановимся на первом факторе. Отметим на координатной оси три уровня: нижний, основной и верхний. Натуральные значения 1 2 3 5 Кодированные значения –1 × 0 +1 Нужно найти кодированное значение для х1 = 2,0. Это значение лежит между 1,0 и 3,0, т.е. между – 1 и 0 в кодированном масштабе. Так как в натуральном масштабе 2,0 лежит посередине между 1,0 и 3,0; то ему соответствует – 0,5 в кодированном масштабе.

Слайд 31





       На выбор интервалов варьирования накладываются естественные ограничения сверху и снизу. Интервал варьирования не может быть меньше той ошибки, с которой экспериментатор фиксирует уровень фактора. Иначе верхний и нижний уровни окажутся неразличимыми. 
       На выбор интервалов варьирования накладываются естественные ограничения сверху и снизу. Интервал варьирования не может быть меньше той ошибки, с которой экспериментатор фиксирует уровень фактора. Иначе верхний и нижний уровни окажутся неразличимыми. 
        С другой стороны, интервал не может быть настолько большим, чтобы верхний или нижний уровни оказались за пределами области определения.
Описание слайда:
На выбор интервалов варьирования накладываются естественные ограничения сверху и снизу. Интервал варьирования не может быть меньше той ошибки, с которой экспериментатор фиксирует уровень фактора. Иначе верхний и нижний уровни окажутся неразличимыми. На выбор интервалов варьирования накладываются естественные ограничения сверху и снизу. Интервал варьирования не может быть меньше той ошибки, с которой экспериментатор фиксирует уровень фактора. Иначе верхний и нижний уровни окажутся неразличимыми. С другой стороны, интервал не может быть настолько большим, чтобы верхний или нижний уровни оказались за пределами области определения.

Слайд 32





Выбор интервалов варьирования – задача трудная, так как она связана с неформализованным этапом планирования эксперимента. 
Выбор интервалов варьирования – задача трудная, так как она связана с неформализованным этапом планирования эксперимента. 
Точность фиксирования факторов определяется точностью приборов и стабильностью уровня в ходе опыта. Для упрощения схемы принятия решений мы введем приближенную классификацию, полагая, что есть низкая, средняя и высокая точности. Можно, например, считать, что поддержание температуры в реакторе с погрешностью не более 1% соответствует высокой, ее более 5% – средней, а более 16% – низкой точности.
Описание слайда:
Выбор интервалов варьирования – задача трудная, так как она связана с неформализованным этапом планирования эксперимента. Выбор интервалов варьирования – задача трудная, так как она связана с неформализованным этапом планирования эксперимента. Точность фиксирования факторов определяется точностью приборов и стабильностью уровня в ходе опыта. Для упрощения схемы принятия решений мы введем приближенную классификацию, полагая, что есть низкая, средняя и высокая точности. Можно, например, считать, что поддержание температуры в реакторе с погрешностью не более 1% соответствует высокой, ее более 5% – средней, а более 16% – низкой точности.

Слайд 33





        Источником сведений о кривизне поверхности отклика могут служить уже упоминавшиеся графики однофакторных зависимостей, а также теоретические соображения. Полезно знать, в каких диапазонах меняются значения параметра оптимизации в разных точках факторного пространства. 
        Источником сведений о кривизне поверхности отклика могут служить уже упоминавшиеся графики однофакторных зависимостей, а также теоретические соображения. Полезно знать, в каких диапазонах меняются значения параметра оптимизации в разных точках факторного пространства. 
         Если имеются результаты некоторого множества опытов, то всегда можно найти наибольшее или наименьшее значения параметра оптимизации. Разность между этими значениями будем называть диапазоном изменения параметра оптимизации для данного множества опытов. 


          Для принятия решений используется априорная информация о точности фиксирования факторов, кривизне поверхности отклика и диапазоне изменения параметра оптимизации. Каждое сочетание градаций перечисленных признаков определяет ситуацию, в которой нужно принимать решение.
Описание слайда:
Источником сведений о кривизне поверхности отклика могут служить уже упоминавшиеся графики однофакторных зависимостей, а также теоретические соображения. Полезно знать, в каких диапазонах меняются значения параметра оптимизации в разных точках факторного пространства. Источником сведений о кривизне поверхности отклика могут служить уже упоминавшиеся графики однофакторных зависимостей, а также теоретические соображения. Полезно знать, в каких диапазонах меняются значения параметра оптимизации в разных точках факторного пространства. Если имеются результаты некоторого множества опытов, то всегда можно найти наибольшее или наименьшее значения параметра оптимизации. Разность между этими значениями будем называть диапазоном изменения параметра оптимизации для данного множества опытов. Для принятия решений используется априорная информация о точности фиксирования факторов, кривизне поверхности отклика и диапазоне изменения параметра оптимизации. Каждое сочетание градаций перечисленных признаков определяет ситуацию, в которой нужно принимать решение.

Слайд 34


Факторы. Лекция 3, слайд №34
Описание слайда:

Слайд 35





       Перейдем к рассмотрению блок-схем принятия решений. 
       Перейдем к рассмотрению блок-схем принятия решений. 
        На первой схеме (рис. 19) представлены девять ситуаций, имеющих место при низкой точности фиксирования факторов. При выборе решений учитываются информация о кривизне поверхности отклика и о 
        Типичное решение – широкий интервал варьирования. Узкий интервал варьирования совершенно не используется, что вполне понятно при низкой точности.
Описание слайда:
Перейдем к рассмотрению блок-схем принятия решений. Перейдем к рассмотрению блок-схем принятия решений. На первой схеме (рис. 19) представлены девять ситуаций, имеющих место при низкой точности фиксирования факторов. При выборе решений учитываются информация о кривизне поверхности отклика и о Типичное решение – широкий интервал варьирования. Узкий интервал варьирования совершенно не используется, что вполне понятно при низкой точности.

Слайд 36





        Наибольшие трудности возникают, когда поверхность отклика нелинейна. Появляется противоречие между низкой точностью фиксирования факторов и кривизной. Первая требует расширения интервала, а вторая – сужения. Решение оказывается неоднозначным.
        Наибольшие трудности возникают, когда поверхность отклика нелинейна. Появляется противоречие между низкой точностью фиксирования факторов и кривизной. Первая требует расширения интервала, а вторая – сужения. Решение оказывается неоднозначным.
 Как поступить?
          Приходится рассматривать дополнительные рекомендации (см. блок-схему). Прежде всего нужно выяснить, нельзя ли увеличить точность эксперимента либо за счет инженерных решений, либо за счет увеличения числа повторных опытов. Если это возможно, то решения принимаются на основе блок-схемы (рис. 20) для средней точности фиксирования факторов. Если это невозможно, то для принятия решения нет достаточных оснований и оно становится интуитивным.
Описание слайда:
Наибольшие трудности возникают, когда поверхность отклика нелинейна. Появляется противоречие между низкой точностью фиксирования факторов и кривизной. Первая требует расширения интервала, а вторая – сужения. Решение оказывается неоднозначным. Наибольшие трудности возникают, когда поверхность отклика нелинейна. Появляется противоречие между низкой точностью фиксирования факторов и кривизной. Первая требует расширения интервала, а вторая – сужения. Решение оказывается неоднозначным. Как поступить? Приходится рассматривать дополнительные рекомендации (см. блок-схему). Прежде всего нужно выяснить, нельзя ли увеличить точность эксперимента либо за счет инженерных решений, либо за счет увеличения числа повторных опытов. Если это возможно, то решения принимаются на основе блок-схемы (рис. 20) для средней точности фиксирования факторов. Если это невозможно, то для принятия решения нет достаточных оснований и оно становится интуитивным.

Слайд 37





         Это блок-схема, как и последующие, служит весьма грубым приближением к действительности. На практике учитывается еще масса обстоятельств. Например, решения, принимаемые по каждому фактору в отдельности, корректируются при рассмотрении совокупности факторов. 
         Это блок-схема, как и последующие, служит весьма грубым приближением к действительности. На практике учитывается еще масса обстоятельств. Например, решения, принимаемые по каждому фактору в отдельности, корректируются при рассмотрении совокупности факторов. 
         На рис. 20 изображена блок-схема для случая средней точности фиксирования факторов.
Описание слайда:
Это блок-схема, как и последующие, служит весьма грубым приближением к действительности. На практике учитывается еще масса обстоятельств. Например, решения, принимаемые по каждому фактору в отдельности, корректируются при рассмотрении совокупности факторов. Это блок-схема, как и последующие, служит весьма грубым приближением к действительности. На практике учитывается еще масса обстоятельств. Например, решения, принимаемые по каждому фактору в отдельности, корректируются при рассмотрении совокупности факторов. На рис. 20 изображена блок-схема для случая средней точности фиксирования факторов.

Слайд 38





        Характерен выбор среднего интервала варьирования. Лишь в случае нелинейной поверхности и широкого диапазона рекомендуется узкий интервал варьирования. При сочетаниях линейной поверхности с узким диапазоном и отсутствием информации о диапазоне выбирается широкий интервал варьирования. Пунктиром, как и выше, показаны редко применяемые альтернативы. 
        Характерен выбор среднего интервала варьирования. Лишь в случае нелинейной поверхности и широкого диапазона рекомендуется узкий интервал варьирования. При сочетаниях линейной поверхности с узким диапазоном и отсутствием информации о диапазоне выбирается широкий интервал варьирования. Пунктиром, как и выше, показаны редко применяемые альтернативы.
Описание слайда:
Характерен выбор среднего интервала варьирования. Лишь в случае нелинейной поверхности и широкого диапазона рекомендуется узкий интервал варьирования. При сочетаниях линейной поверхности с узким диапазоном и отсутствием информации о диапазоне выбирается широкий интервал варьирования. Пунктиром, как и выше, показаны редко применяемые альтернативы. Характерен выбор среднего интервала варьирования. Лишь в случае нелинейной поверхности и широкого диапазона рекомендуется узкий интервал варьирования. При сочетаниях линейной поверхности с узким диапазоном и отсутствием информации о диапазоне выбирается широкий интервал варьирования. Пунктиром, как и выше, показаны редко применяемые альтернативы.

Слайд 39





       Наконец, на рис. 21 построена блок-схема для случая высокой точности фиксирования фактора. Сочетание высокой точности с нелинейностью поверхности всегда приводит к выбору узкого интервала. Довольно часто выбирается средний интервал и лишь в двух случаях широкий. В обеих последних блок-схемах отсутствуют неоднозначные решения. 
       Наконец, на рис. 21 построена блок-схема для случая высокой точности фиксирования фактора. Сочетание высокой точности с нелинейностью поверхности всегда приводит к выбору узкого интервала. Довольно часто выбирается средний интервал и лишь в двух случаях широкий. В обеих последних блок-схемах отсутствуют неоднозначные решения. 
       Итак, вооружившись умением выбирать основной уровень и интервалы варьирования факторов, мы готовы приступить к построению плана проведения эксперимента.
Описание слайда:
Наконец, на рис. 21 построена блок-схема для случая высокой точности фиксирования фактора. Сочетание высокой точности с нелинейностью поверхности всегда приводит к выбору узкого интервала. Довольно часто выбирается средний интервал и лишь в двух случаях широкий. В обеих последних блок-схемах отсутствуют неоднозначные решения. Наконец, на рис. 21 построена блок-схема для случая высокой точности фиксирования фактора. Сочетание высокой точности с нелинейностью поверхности всегда приводит к выбору узкого интервала. Довольно часто выбирается средний интервал и лишь в двух случаях широкий. В обеих последних блок-схемах отсутствуют неоднозначные решения. Итак, вооружившись умением выбирать основной уровень и интервалы варьирования факторов, мы готовы приступить к построению плана проведения эксперимента.

Слайд 40





Полный факторный эксперимент типа 2к 
Полный факторный эксперимент типа 2к 
Простая формула, которая для этого используется, N = 2к, где N – число опытов, к – число факторов, 2 – число уровней. В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом. 
Если выбранная модель включает только линейные члены полинома и их произведения, то для оценки всех параметров модели используется план эксперимента с варьированием всех факторов на двух уровнях. Такие планы принято называть планами типа 2n, где 2n=N – число всех возможных опытов, n – количество варьируемых факторов.
Описание слайда:
Полный факторный эксперимент типа 2к Полный факторный эксперимент типа 2к Простая формула, которая для этого используется, N = 2к, где N – число опытов, к – число факторов, 2 – число уровней. В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом. Если выбранная модель включает только линейные члены полинома и их произведения, то для оценки всех параметров модели используется план эксперимента с варьированием всех факторов на двух уровнях. Такие планы принято называть планами типа 2n, где 2n=N – число всех возможных опытов, n – количество варьируемых факторов.

Слайд 41





Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами (репликами) планирования эксперимента. 
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами (репликами) планирования эксперимента. 
Матрица планирования 22 для двух факторов показана в табл.
Описание слайда:
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами (репликами) планирования эксперимента. Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами (репликами) планирования эксперимента. Матрица планирования 22 для двух факторов показана в табл.

Слайд 42





     Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой. 
     Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой. 
      Таким образом, мы имеем два вектора-столбца независимых переменных и один вектор-столбец параметра оптимизаций.
Описание слайда:
Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой. Каждый столбец в матрице планирования называют вектор-столбцом, а каждую строку – вектор-строкой. Таким образом, мы имеем два вектора-столбца независимых переменных и один вектор-столбец параметра оптимизаций.

Слайд 43





        На рис.9.2 показан в факторном пространстве симметричный двухуровневый план для двухфакторной функции отклика y=f(x1x2) при нейтральном (рис.9.2,а) и нормированном (рис.9.2,б) представлении уровней факторов. Здесь , – искомые натуральные уровни факторов, – нижние, – верхние уровни, , – интервалы варьирования.
        На рис.9.2 показан в факторном пространстве симметричный двухуровневый план для двухфакторной функции отклика y=f(x1x2) при нейтральном (рис.9.2,а) и нормированном (рис.9.2,б) представлении уровней факторов. Здесь , – искомые натуральные уровни факторов, – нижние, – верхние уровни, , – интервалы варьирования.
Описание слайда:
На рис.9.2 показан в факторном пространстве симметричный двухуровневый план для двухфакторной функции отклика y=f(x1x2) при нейтральном (рис.9.2,а) и нормированном (рис.9.2,б) представлении уровней факторов. Здесь , – искомые натуральные уровни факторов, – нижние, – верхние уровни, , – интервалы варьирования. На рис.9.2 показан в факторном пространстве симметричный двухуровневый план для двухфакторной функции отклика y=f(x1x2) при нейтральном (рис.9.2,а) и нормированном (рис.9.2,б) представлении уровней факторов. Здесь , – искомые натуральные уровни факторов, – нижние, – верхние уровни, , – интервалы варьирования.

Слайд 44





Запись матрицы планирования, особенно для многих факторов, громоздка. Для ее сокращения удобно ввести условные буквенные обозначения строк. 
Запись матрицы планирования, особенно для многих факторов, громоздка. Для ее сокращения удобно ввести условные буквенные обозначения строк. 
Матрица планирования вместе с принятыми буквенными обозначениями приведена в табл. 2
Описание слайда:
Запись матрицы планирования, особенно для многих факторов, громоздка. Для ее сокращения удобно ввести условные буквенные обозначения строк. Запись матрицы планирования, особенно для многих факторов, громоздка. Для ее сокращения удобно ввести условные буквенные обозначения строк. Матрица планирования вместе с принятыми буквенными обозначениями приведена в табл. 2

Слайд 45





       Теперь вместо полной записи матрицы планирования можно пользоваться только буквенными обозначениями, Ниже приведена буквенная запись еще одного плана: с, b, a, abc, (1), bc, aс, ab. Матрица планирования приведена в табл. 3. 
       Теперь вместо полной записи матрицы планирования можно пользоваться только буквенными обозначениями, Ниже приведена буквенная запись еще одного плана: с, b, a, abc, (1), bc, aс, ab. Матрица планирования приведена в табл. 3.
Описание слайда:
Теперь вместо полной записи матрицы планирования можно пользоваться только буквенными обозначениями, Ниже приведена буквенная запись еще одного плана: с, b, a, abc, (1), bc, aс, ab. Матрица планирования приведена в табл. 3. Теперь вместо полной записи матрицы планирования можно пользоваться только буквенными обозначениями, Ниже приведена буквенная запись еще одного плана: с, b, a, abc, (1), bc, aс, ab. Матрица планирования приведена в табл. 3.

Слайд 46





Таким образом, вы построили полный факторный эксперимент 23. Он имеет восемь опытов и включает все возможные комбинации уровней трех факторов. 
Таким образом, вы построили полный факторный эксперимент 23. Он имеет восемь опытов и включает все возможные комбинации уровней трех факторов. 
Геометрической интерпретацией полного факторного эксперимента 23 служит куб, координаты вершин которого задают условия опытов. 
Если поместить центр куба в точку основного уровня факторов, а масштабы по осям выбрать так, чтобы интервал варьирования равнялся единице, то получится куб, изображенный на рис. Куб задает область эксперимента, а центр куба является ее центром. 
        Фигура, Задающая Область Эксперимента В Многомерном Пространстве, Является Некоторым Аналогом Куба. Будем Называть Эту Фигуру Гиперкубом.
Описание слайда:
Таким образом, вы построили полный факторный эксперимент 23. Он имеет восемь опытов и включает все возможные комбинации уровней трех факторов. Таким образом, вы построили полный факторный эксперимент 23. Он имеет восемь опытов и включает все возможные комбинации уровней трех факторов. Геометрической интерпретацией полного факторного эксперимента 23 служит куб, координаты вершин которого задают условия опытов. Если поместить центр куба в точку основного уровня факторов, а масштабы по осям выбрать так, чтобы интервал варьирования равнялся единице, то получится куб, изображенный на рис. Куб задает область эксперимента, а центр куба является ее центром. Фигура, Задающая Область Эксперимента В Многомерном Пространстве, Является Некоторым Аналогом Куба. Будем Называть Эту Фигуру Гиперкубом.

Слайд 47





Свойства полного факторного эксперимента типа 2k 
Свойства полного факторного эксперимента типа 2k 
Два свойства отдельных столбцов матрицы планирования следуют непосредственно из построения матрицы.
Описание слайда:
Свойства полного факторного эксперимента типа 2k Свойства полного факторного эксперимента типа 2k Два свойства отдельных столбцов матрицы планирования следуют непосредственно из построения матрицы.

Слайд 48





Первое из них – симметричность относительно центра эксперимента – формулируется следующим, образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, или , где j – номер фактора, i – номер опыта, N – число опытов.
Первое из них – симметричность относительно центра эксперимента – формулируется следующим, образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, или , где j – номер фактора, i – номер опыта, N – число опытов.
Второе свойство – так называемое условие нормировки – формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или . Это следствие того, что значения факторов в матрице задаются +1 и –1. 
Третье свойство - свойство совокупности столбцов: сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, или . , jn.
Описание слайда:
Первое из них – симметричность относительно центра эксперимента – формулируется следующим, образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, или , где j – номер фактора, i – номер опыта, N – число опытов. Первое из них – симметричность относительно центра эксперимента – формулируется следующим, образом: алгебраическая сумма элементов вектор-столбца каждого фактора равна нулю, или , где j – номер фактора, i – номер опыта, N – число опытов. Второе свойство – так называемое условие нормировки – формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или . Это следствие того, что значения факторов в матрице задаются +1 и –1. Третье свойство - свойство совокупности столбцов: сумма почленных произведений любых двух вектор-столбцов матрицы равна нулю, или . , jn.

Слайд 49





Это важное свойство называется ортогональностью матрицы планирования. 
Это важное свойство называется ортогональностью матрицы планирования. 
Последнее, четвертое свойство называется ротатабельностью, т.е. точки в матрице планирования подбираются так, что точность предсказания значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления.
Описание слайда:
Это важное свойство называется ортогональностью матрицы планирования. Это важное свойство называется ортогональностью матрицы планирования. Последнее, четвертое свойство называется ротатабельностью, т.е. точки в матрице планирования подбираются так, что точность предсказания значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления.

Слайд 50





Даны две матрицы планирования: 
Даны две матрицы планирования: 


Давайте проверим, как выполняются все три свойства для каждой из матриц. Первое свойство выполняется для всех столбцов обеих матриц. 
Действительно, для первого столбца матрицы а) имеем 
      (– 1) + (+1) + (- 1) + (+ 1) = 0. 
Аналогичный результат получается для всех других столбцов. 
Второе свойство– также выполняется для обеих матриц. 
С третьим свойством, однако, дело обстоит иначе. 
Если для матрицы а) формула ортогональности выполняется, то в случае б) это не так. Действительно (–1) (+ 1) + (+ 1) (– 1) + (– 1) (+ 1) + (+1)(–1) = –4≠0.
Описание слайда:
Даны две матрицы планирования: Даны две матрицы планирования: Давайте проверим, как выполняются все три свойства для каждой из матриц. Первое свойство выполняется для всех столбцов обеих матриц. Действительно, для первого столбца матрицы а) имеем (– 1) + (+1) + (- 1) + (+ 1) = 0. Аналогичный результат получается для всех других столбцов. Второе свойство– также выполняется для обеих матриц. С третьим свойством, однако, дело обстоит иначе. Если для матрицы а) формула ортогональности выполняется, то в случае б) это не так. Действительно (–1) (+ 1) + (+ 1) (– 1) + (– 1) (+ 1) + (+1)(–1) = –4≠0.

Слайд 51





Полный факторный эксперимент и математическая модель 
Полный факторный эксперимент и математическая модель 


           Давайте еще раз вернемся к матрице 23. Для движения к точке оптимума нам нужна линейная модель у = b0 + b1x1+ b2х2. Наша цель – найти по результатам эксперимента значения неизвестных коэффициентов модели. До сих пор, говоря о линейной модели, мы не останавливались на важном вопросе о статистической оценке ее коэффициентов. Теперь необходимо сделать ряд замечаний по этому поводу. 
          Можно утверждать, что эксперимент проводится для проверки гипотезы о том, что линейная модель η = β0 + β1x1+ β2х2 адекватна. Греческие буквы использованы для обозначения «истинных» генеральных значений соответствующих неизвестных. Эксперимент, содержащий конечное число опытов, позволяет только получить выборочные оценки для коэффициентов уравнения у = b0 + b1x1 + … + bkхk. Их точность и надежность зависят от свойств выборки и нуждаются в статистической проверке.
Описание слайда:
Полный факторный эксперимент и математическая модель Полный факторный эксперимент и математическая модель Давайте еще раз вернемся к матрице 23. Для движения к точке оптимума нам нужна линейная модель у = b0 + b1x1+ b2х2. Наша цель – найти по результатам эксперимента значения неизвестных коэффициентов модели. До сих пор, говоря о линейной модели, мы не останавливались на важном вопросе о статистической оценке ее коэффициентов. Теперь необходимо сделать ряд замечаний по этому поводу. Можно утверждать, что эксперимент проводится для проверки гипотезы о том, что линейная модель η = β0 + β1x1+ β2х2 адекватна. Греческие буквы использованы для обозначения «истинных» генеральных значений соответствующих неизвестных. Эксперимент, содержащий конечное число опытов, позволяет только получить выборочные оценки для коэффициентов уравнения у = b0 + b1x1 + … + bkхk. Их точность и надежность зависят от свойств выборки и нуждаются в статистической проверке.

Слайд 52





После проведения опытов во всех точках факторного пространства необходимо найти коэффициенты уравнения регрессии. Для этого воспользуемся методом наименьших квадратов. 
После проведения опытов во всех точках факторного пространства необходимо найти коэффициенты уравнения регрессии. Для этого воспользуемся методом наименьших квадратов. 

 поскольку:
Описание слайда:
После проведения опытов во всех точках факторного пространства необходимо найти коэффициенты уравнения регрессии. Для этого воспользуемся методом наименьших квадратов. После проведения опытов во всех точках факторного пространства необходимо найти коэффициенты уравнения регрессии. Для этого воспользуемся методом наименьших квадратов. поскольку:

Слайд 53





то после дифференцирования получим:  
то после дифференцирования получим:
Описание слайда:
то после дифференцирования получим: то после дифференцирования получим:

Слайд 54





Для линейной регрессии при k=2:
Для линейной регрессии при k=2:
Описание слайда:
Для линейной регрессии при k=2: Для линейной регрессии при k=2:

Слайд 55





продифференцировав по коэффициентам, получим:
продифференцировав по коэффициентам, получим:
Описание слайда:
продифференцировав по коэффициентам, получим: продифференцировав по коэффициентам, получим:

Слайд 56





Запишем уравнения в полной форме:
Запишем уравнения в полной форме:
Описание слайда:
Запишем уравнения в полной форме: Запишем уравнения в полной форме:

Слайд 57


Факторы. Лекция 3, слайд №57
Описание слайда:

Слайд 58





Отсюда, принимая в расчет свойства матрицы планирования, получим следующие формулы для вычисления коэффициентов:
Отсюда, принимая в расчет свойства матрицы планирования, получим следующие формулы для вычисления коэффициентов:
Описание слайда:
Отсюда, принимая в расчет свойства матрицы планирования, получим следующие формулы для вычисления коэффициентов: Отсюда, принимая в расчет свойства матрицы планирования, получим следующие формулы для вычисления коэффициентов:

Слайд 59





или в общем виде: 
или в общем виде:
Описание слайда:
или в общем виде: или в общем виде:

Слайд 60





Вы видите, что благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру. 
Вы видите, что благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру. 
Для подсчета коэффициента b1 используется вектор-столбец х1 а для b2 – столбец х2. Остается неясным, как найти b0. Если наше уравнение у = b0 + b1x1+ b2х2 справедливо, то оно верно и для средних арифметических значений переменных:  = b0 + b1 1+ b2 2. Но в силу свойства симметрии 1 = 2 = 0. Следовательно,  = b0. Мы показали, что b0 есть среднее арифметическое значение параметра оптимизации. Чтобы его получить, необходимо сложить все у и разделить на число опытов. Чтобы привести эту процедуру в соответствие с формулой для вычисления коэффициентов, в матрицу планирования удобно ввести вектор-столбец фиктивной переменной x0, которая принимает во всех опытах значение +1. Это было уже учтено в записи формулы, где j принимало значения от 0 до к. 
Теперь у нас есть все необходимое, чтобы найти неизвестные коэффициенты линейной модели.
Описание слайда:
Вы видите, что благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру. Вы видите, что благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру. Для подсчета коэффициента b1 используется вектор-столбец х1 а для b2 – столбец х2. Остается неясным, как найти b0. Если наше уравнение у = b0 + b1x1+ b2х2 справедливо, то оно верно и для средних арифметических значений переменных: = b0 + b1 1+ b2 2. Но в силу свойства симметрии 1 = 2 = 0. Следовательно, = b0. Мы показали, что b0 есть среднее арифметическое значение параметра оптимизации. Чтобы его получить, необходимо сложить все у и разделить на число опытов. Чтобы привести эту процедуру в соответствие с формулой для вычисления коэффициентов, в матрицу планирования удобно ввести вектор-столбец фиктивной переменной x0, которая принимает во всех опытах значение +1. Это было уже учтено в записи формулы, где j принимало значения от 0 до к. Теперь у нас есть все необходимое, чтобы найти неизвестные коэффициенты линейной модели.

Слайд 61





        Коэффициенты при независимых переменных указывают на силу влияния факторов. 
        Коэффициенты при независимых переменных указывают на силу влияния факторов. 
       Чем больше численная величина коэффициента, тем большее влияние оказывает фактор.
       Если коэффициент имеет знак плюс, то с увеличением значения фактора параметр оптимизации увеличивается, а если минус, то уменьшается. Величина коэффициента соответствует вкладу данного фактора в величину параметра оптимизации при переходе фактора с нулевого уровня на верхний или нижний.
Описание слайда:
Коэффициенты при независимых переменных указывают на силу влияния факторов. Коэффициенты при независимых переменных указывают на силу влияния факторов. Чем больше численная величина коэффициента, тем большее влияние оказывает фактор. Если коэффициент имеет знак плюс, то с увеличением значения фактора параметр оптимизации увеличивается, а если минус, то уменьшается. Величина коэффициента соответствует вкладу данного фактора в величину параметра оптимизации при переходе фактора с нулевого уровня на верхний или нижний.

Слайд 62





Матрица планирования эксперимента 22  
Матрица планирования эксперимента 22  
с учетом взаимодействия факторов
Описание слайда:
Матрица планирования эксперимента 22 Матрица планирования эксперимента 22 с учетом взаимодействия факторов

Слайд 63





Теперь модель выглядит следующим образом:
Теперь модель выглядит следующим образом:
Описание слайда:
Теперь модель выглядит следующим образом: Теперь модель выглядит следующим образом:

Слайд 64





Коэффициент b12 вычисляется обычным путем.
Коэффициент b12 вычисляется обычным путем.
Столбцы x1 и х2 задают планирование – по ним непосредственно определяются условия опытов, а столбцы х0 и х1х2 служат только для расчета. 
Обращаем Ваше Внимание На То, Что При Оптимизации Мы Стремимся Сделать Эффекты Взаимодействия Возможно Меньшими. 
В задачах интерполяции, напротив, их выявление часто важно и интересно. 
Покажем на примере еще один способ расчета коэффициентов, известный под названием метода Йетса. Все операции по расчету приведены в табл.
Описание слайда:
Коэффициент b12 вычисляется обычным путем. Коэффициент b12 вычисляется обычным путем. Столбцы x1 и х2 задают планирование – по ним непосредственно определяются условия опытов, а столбцы х0 и х1х2 служат только для расчета. Обращаем Ваше Внимание На То, Что При Оптимизации Мы Стремимся Сделать Эффекты Взаимодействия Возможно Меньшими. В задачах интерполяции, напротив, их выявление часто важно и интересно. Покажем на примере еще один способ расчета коэффициентов, известный под названием метода Йетса. Все операции по расчету приведены в табл.

Слайд 65


Факторы. Лекция 3, слайд №65
Описание слайда:

Слайд 66





Слева в этой таблице выписан вектор-столбец значений параметра оптимизации. Первая операция (2-й столбец) состоит в попарном сложении и вычитании этих значений, причем верхнее число вычитается из нижнего. Вторая операция (3-й столбец) состоит в том же действии, но уже с числами второго столбца. 
Слева в этой таблице выписан вектор-столбец значений параметра оптимизации. Первая операция (2-й столбец) состоит в попарном сложении и вычитании этих значений, причем верхнее число вычитается из нижнего. Вторая операция (3-й столбец) состоит в том же действии, но уже с числами второго столбца. 
Если теперь числа, оказавшиеся в третьем столбце, разделить на число опытов, то получим значения коэффициентов. Операции сложения и вычитания повторяются столько раз, сколько имеется факторов. 
 
Описание слайда:
Слева в этой таблице выписан вектор-столбец значений параметра оптимизации. Первая операция (2-й столбец) состоит в попарном сложении и вычитании этих значений, причем верхнее число вычитается из нижнего. Вторая операция (3-й столбец) состоит в том же действии, но уже с числами второго столбца. Слева в этой таблице выписан вектор-столбец значений параметра оптимизации. Первая операция (2-й столбец) состоит в попарном сложении и вычитании этих значений, причем верхнее число вычитается из нижнего. Вторая операция (3-й столбец) состоит в том же действии, но уже с числами второго столбца. Если теперь числа, оказавшиеся в третьем столбце, разделить на число опытов, то получим значения коэффициентов. Операции сложения и вычитания повторяются столько раз, сколько имеется факторов.  

Слайд 67


Факторы. Лекция 3, слайд №67
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию