🗊Презентация Гетероскедастичность

Категория: Математика
Нажмите для полного просмотра!
Гетероскедастичность, слайд №1Гетероскедастичность, слайд №2Гетероскедастичность, слайд №3Гетероскедастичность, слайд №4Гетероскедастичность, слайд №5Гетероскедастичность, слайд №6Гетероскедастичность, слайд №7Гетероскедастичность, слайд №8Гетероскедастичность, слайд №9Гетероскедастичность, слайд №10Гетероскедастичность, слайд №11Гетероскедастичность, слайд №12Гетероскедастичность, слайд №13Гетероскедастичность, слайд №14Гетероскедастичность, слайд №15Гетероскедастичность, слайд №16Гетероскедастичность, слайд №17Гетероскедастичность, слайд №18Гетероскедастичность, слайд №19Гетероскедастичность, слайд №20Гетероскедастичность, слайд №21Гетероскедастичность, слайд №22Гетероскедастичность, слайд №23Гетероскедастичность, слайд №24Гетероскедастичность, слайд №25Гетероскедастичность, слайд №26Гетероскедастичность, слайд №27Гетероскедастичность, слайд №28Гетероскедастичность, слайд №29Гетероскедастичность, слайд №30Гетероскедастичность, слайд №31Гетероскедастичность, слайд №32Гетероскедастичность, слайд №33Гетероскедастичность, слайд №34Гетероскедастичность, слайд №35Гетероскедастичность, слайд №36Гетероскедастичность, слайд №37

Содержание

Вы можете ознакомиться и скачать презентацию на тему Гетероскедастичность. Доклад-сообщение содержит 37 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Гетероскедастичность
Описание слайда:
Гетероскедастичность

Слайд 2





ОПРЕДЕЛЕНИЕ ГЕТЕРОСКЕДАСТИЧНОСТИ
Гетероскедастичность – это неоднородность
наблюдений. Она характеризуется тем, что не
выполняется предпосылка 20 использования МНК:
Выполнимость предпосылки 20 называется
гомоскедастичностью.
Описание слайда:
ОПРЕДЕЛЕНИЕ ГЕТЕРОСКЕДАСТИЧНОСТИ Гетероскедастичность – это неоднородность наблюдений. Она характеризуется тем, что не выполняется предпосылка 20 использования МНК: Выполнимость предпосылки 20 называется гомоскедастичностью.

Слайд 3





ИЛЛЮСТРАЦИЯ ГЕТЕРОСКЕДАСТИЧНОСТИ
Описание слайда:
ИЛЛЮСТРАЦИЯ ГЕТЕРОСКЕДАСТИЧНОСТИ

Слайд 4





ГЕТЕРОСКЕДАСТИЧНОСТЬ ОШИБОК
Причиной непостоянства дисперсии
эконометрической модели часто является ее зависимость
от масштаба рассматриваемых явлений.
Описание слайда:
ГЕТЕРОСКЕДАСТИЧНОСТЬ ОШИБОК Причиной непостоянства дисперсии эконометрической модели часто является ее зависимость от масштаба рассматриваемых явлений.

Слайд 5





Примеры моделей с гетероскедастичным случайным членом
Описание слайда:
Примеры моделей с гетероскедастичным случайным членом

Слайд 6





ИСТИННАЯ И ЛОЖНАЯ ГЕТЕРОСКЕДАСТИЧНОСТЬ
1. Истинная гетероскедастичность
Вызывается непостоянством дисперсии случайного
члена, ее зависимостью от различных факторов.
Описание слайда:
ИСТИННАЯ И ЛОЖНАЯ ГЕТЕРОСКЕДАСТИЧНОСТЬ 1. Истинная гетероскедастичность Вызывается непостоянством дисперсии случайного члена, ее зависимостью от различных факторов.

Слайд 7





Источники гетероскедастичности – 1
Истинная гетероскедастичность возникает в перекрестных выборках при зависимости масштаба изменений зависимой переменной от некоторой переменной, называемой фактором пропорциональности (Z).
Описание слайда:
Источники гетероскедастичности – 1 Истинная гетероскедастичность возникает в перекрестных выборках при зависимости масштаба изменений зависимой переменной от некоторой переменной, называемой фактором пропорциональности (Z).

Слайд 8





Источники гетероскедастичности – 1
Наиболее распространенный случай истинной
гетероскедастичности – 1: дисперсия растет с
ростом одного из факторов.
Описание слайда:
Источники гетероскедастичности – 1 Наиболее распространенный случай истинной гетероскедастичности – 1: дисперсия растет с ростом одного из факторов.

Слайд 9





Источники гетероскедастичности – 2
Истинная гетероскедастичность возникает также и
во временных рядах, когда зависимая переменная
имеет большой интервал качественно
неоднородных значений или высокий темп
изменения (инфляция, технологические сдвиги,
изменения в законодательстве, потребительские
предпочтения и т.д.).
Описание слайда:
Источники гетероскедастичности – 2 Истинная гетероскедастичность возникает также и во временных рядах, когда зависимая переменная имеет большой интервал качественно неоднородных значений или высокий темп изменения (инфляция, технологические сдвиги, изменения в законодательстве, потребительские предпочтения и т.д.).

Слайд 10





Гетероскедастичность простейшего вида
Мы в дальнейшем будем рассматривать, главным
образом, только гетероскедастичность простейшего
вида:
Описание слайда:
Гетероскедастичность простейшего вида Мы в дальнейшем будем рассматривать, главным образом, только гетероскедастичность простейшего вида:

Слайд 11





СЛЕДСТВИЯ ГЕТЕРОСКЕДАСТИЧНОСТИ
1. Истинная гетероскедастичность не приводит к
смещению оценок коэффициентов регрессии
2. Стандартные ошибки коэффициентов
(вычисленные в предположении.
гомоскедастичности) будут занижены. Это
приведет к завышению t-статистик и даст
неправильное (завышенное) представление о
точности оценок.
Описание слайда:
СЛЕДСТВИЯ ГЕТЕРОСКЕДАСТИЧНОСТИ 1. Истинная гетероскедастичность не приводит к смещению оценок коэффициентов регрессии 2. Стандартные ошибки коэффициентов (вычисленные в предположении. гомоскедастичности) будут занижены. Это приведет к завышению t-статистик и даст неправильное (завышенное) представление о точности оценок.

Слайд 12





ОБНАРУЖЕНИЕ ГЕТЕРОСКЕДАСТИЧНОСТИ
Обнаружение гетероскедастичности в каждом конкретном
случае – довольно сложная задача.
Для знания        необходимо знать распределение случайной
величины Y/X=xi . На практике часто для каждого
конкретного значения xi известно лишь одно yi, что не
позволяет оценить дисперсию случайной величины Y/X=xi.
Описание слайда:
ОБНАРУЖЕНИЕ ГЕТЕРОСКЕДАСТИЧНОСТИ Обнаружение гетероскедастичности в каждом конкретном случае – довольно сложная задача. Для знания необходимо знать распределение случайной величины Y/X=xi . На практике часто для каждого конкретного значения xi известно лишь одно yi, что не позволяет оценить дисперсию случайной величины Y/X=xi.

Слайд 13





ОБНАРУЖЕНИЕ ГЕТЕРОСКЕДАСТИЧНОСТИ
Тесты:
1. Тест ранговой корреляции Спирмена.
2. Тест Парка.
3. Тест Глейзера.
4. Тест Голдфелда-Квандта.
5. Тест Уайта.
6. Тест Бреуша-Пагана.
Описание слайда:
ОБНАРУЖЕНИЕ ГЕТЕРОСКЕДАСТИЧНОСТИ Тесты: 1. Тест ранговой корреляции Спирмена. 2. Тест Парка. 3. Тест Глейзера. 4. Тест Голдфелда-Квандта. 5. Тест Уайта. 6. Тест Бреуша-Пагана.

Слайд 14





ТЕСТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА
При использовании данного теста
предполагается, что дисперсии отклонений
остатков будут монотонно изменятьcя
(увеличиваться или уменьшаться) с увеличением
фактора пропорциональности Z.
Описание слайда:
ТЕСТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА При использовании данного теста предполагается, что дисперсии отклонений остатков будут монотонно изменятьcя (увеличиваться или уменьшаться) с увеличением фактора пропорциональности Z.

Слайд 15





ТЕСТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА. Алгоритм применения
1. Рассчитываются ранги (порядковые номера)
значений фактора пропорциональности zi = xik.
2. Рассчитывается уравнение
и вычисляются остатки                                  .
3. Рассчитываются ранги остатков ei.
Описание слайда:
ТЕСТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА. Алгоритм применения 1. Рассчитываются ранги (порядковые номера) значений фактора пропорциональности zi = xik. 2. Рассчитывается уравнение и вычисляются остатки . 3. Рассчитываются ранги остатков ei.

Слайд 16





ТЕСТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА. Алгоритм применения
4. Рассчитывается коэффициент ранговой корреляции Спирмена
                                      , Di – разность рангов z и e.
5. Рассчитывают статистику                                  , 
распределенную нормально N(0,1) при отсутствии
гетероскедастичности.
Описание слайда:
ТЕСТ РАНГОВОЙ КОРРЕЛЯЦИИ СПИРМЕНА. Алгоритм применения 4. Рассчитывается коэффициент ранговой корреляции Спирмена , Di – разность рангов z и e. 5. Рассчитывают статистику , распределенную нормально N(0,1) при отсутствии гетероскедастичности.

Слайд 17





ТЕСТ ПАРКА
Здесь предполагается, что дисперсии          связаны
с фактором пропорциональности Z в виде:
Т.к. дисперсии         неизвестны, то их заменяют
оценками квадратов отклонений ei2.
Описание слайда:
ТЕСТ ПАРКА Здесь предполагается, что дисперсии связаны с фактором пропорциональности Z в виде: Т.к. дисперсии неизвестны, то их заменяют оценками квадратов отклонений ei2.

Слайд 18





ТЕСТ ПАРКА. 
Алгоритм применения
1. Строится уравнение регрессии:
и вычисляются остатки                                 .
2. Выбирается фактор пропорциональности Z и
оценивают вспомогательное уравнение регрессии:
3. Проверяют значимость коэффициента при
Описание слайда:
ТЕСТ ПАРКА. Алгоритм применения 1. Строится уравнение регрессии: и вычисляются остатки . 2. Выбирается фактор пропорциональности Z и оценивают вспомогательное уравнение регрессии: 3. Проверяют значимость коэффициента при

Слайд 19





ТЕСТ ГЛЕЙЗЕРА
Здесь предполагается, что дисперсии          связаны
с фактором пропорциональности Z в виде:
Т.к. средние квадратические отклонения
неизвестны, то их заменяют модулями оценок
отклонений       .
Описание слайда:
ТЕСТ ГЛЕЙЗЕРА Здесь предполагается, что дисперсии связаны с фактором пропорциональности Z в виде: Т.к. средние квадратические отклонения неизвестны, то их заменяют модулями оценок отклонений .

Слайд 20





ТЕСТ ГЛЕЙЗЕРА. 
Алгоритм применения
1. Строится уравнение регрессии:
и вычисляются остатки                                 .
2. Выбирается фактор пропорциональности Z и оценивают
вспомогательное уравнение регрессии:
Изменяя , строят несколько моделей:  
3. Статистическая значимость коэффициента 1 в каждом случае
означает наличие гетероскедастичности.
4. Если для нескольких моделей будет получена значимая
оценка 1 , то характер гетероскедастичности определяют по
наиболее значимой из них.
Описание слайда:
ТЕСТ ГЛЕЙЗЕРА. Алгоритм применения 1. Строится уравнение регрессии: и вычисляются остатки . 2. Выбирается фактор пропорциональности Z и оценивают вспомогательное уравнение регрессии: Изменяя , строят несколько моделей: 3. Статистическая значимость коэффициента 1 в каждом случае означает наличие гетероскедастичности. 4. Если для нескольких моделей будет получена значимая оценка 1 , то характер гетероскедастичности определяют по наиболее значимой из них.

Слайд 21





ТЕСТЫ ПАРКА и ГЛЕЙЗЕРА. 
Выводы
Отметим, что как в тесте Парка, так и в тесте
Глейзера для отклонений i может нарушаться
условие гомоскедастичности.
Однако, во многих случаях используемые в
тестах модели являются достаточно хорошими
для определения гетероскедастичности.
Описание слайда:
ТЕСТЫ ПАРКА и ГЛЕЙЗЕРА. Выводы Отметим, что как в тесте Парка, так и в тесте Глейзера для отклонений i может нарушаться условие гомоскедастичности. Однако, во многих случаях используемые в тестах модели являются достаточно хорошими для определения гетероскедастичности.

Слайд 22





ТЕСТ БРЕУШ-ПАГАНА
Тест применим в предположении, что:
Дисперсии         зависят от некоторых
дополнительных переменных                          :
Описание слайда:
ТЕСТ БРЕУШ-ПАГАНА Тест применим в предположении, что: Дисперсии зависят от некоторых дополнительных переменных :

Слайд 23





ТЕСТ БРЕУШ-ПАГАНА. 
Алгоритм применения
1. Строится уравнение регрессии:
и вычисляются остатки:
2. Вычисляют оценку дисперсии остатков:
3. Строят вспомогательное уравнение регрессии:
Описание слайда:
ТЕСТ БРЕУШ-ПАГАНА. Алгоритм применения 1. Строится уравнение регрессии: и вычисляются остатки: 2. Вычисляют оценку дисперсии остатков: 3. Строят вспомогательное уравнение регрессии:

Слайд 24





ТЕСТ БРЕУШ-ПАГАНА. 
Алгоритм применения
4. Для вспомогательного уравнения регрессии определяют
объясненную часть вариации RSS.
5. Находим тестовую статистику:
6. Если верна гипотеза H0: гомоскедастичность остатков, то
статистика BP имеет распределение        . Т.е. о наличии
гетероскедастичности остатков на уровне значимости 
свидетельствует:
Описание слайда:
ТЕСТ БРЕУШ-ПАГАНА. Алгоритм применения 4. Для вспомогательного уравнения регрессии определяют объясненную часть вариации RSS. 5. Находим тестовую статистику: 6. Если верна гипотеза H0: гомоскедастичность остатков, то статистика BP имеет распределение . Т.е. о наличии гетероскедастичности остатков на уровне значимости  свидетельствует:

Слайд 25





ТЕСТ БРЕУШ-ПАГАНА. Замечания
При                  не существует естественного
преобразования, корректирующего гетероскедастичность
Описание слайда:
ТЕСТ БРЕУШ-ПАГАНА. Замечания При не существует естественного преобразования, корректирующего гетероскедастичность

Слайд 26





ТЕСТ ГОЛДФЕЛДА-КВАНДТА
В этом тесте предполагается:
1. Стандартные отклонения остатков
пропорциональны фактору пропорциональности
Z, т.е.
2. Случайный член  имеет нормальное распределение и отсутствует автокорреляция остатков (предпосылка 30).
Описание слайда:
ТЕСТ ГОЛДФЕЛДА-КВАНДТА В этом тесте предполагается: 1. Стандартные отклонения остатков пропорциональны фактору пропорциональности Z, т.е. 2. Случайный член  имеет нормальное распределение и отсутствует автокорреляция остатков (предпосылка 30).

Слайд 27





ТЕСТ ГОЛДФЕЛДА-КВАНДТА. 
Алгоритм применения
1. Выделяют фактор пропорциональности Z = Xk.
Данные упорядочиваются в порядке возрастания
величины Z.
2. Отбрасывают среднюю треть упорядоченных
наблюдений. Для первой и последней третей
строятся две отдельные регрессии, используя ту же
спецификацию модели регрессии.
3. Количество наблюдений в этих подвыборках
должно быть одинаково. Обозначим его l.
Описание слайда:
ТЕСТ ГОЛДФЕЛДА-КВАНДТА. Алгоритм применения 1. Выделяют фактор пропорциональности Z = Xk. Данные упорядочиваются в порядке возрастания величины Z. 2. Отбрасывают среднюю треть упорядоченных наблюдений. Для первой и последней третей строятся две отдельные регрессии, используя ту же спецификацию модели регрессии. 3. Количество наблюдений в этих подвыборках должно быть одинаково. Обозначим его l.

Слайд 28





ТЕСТ ГОЛДФЕЛДА-КВАНДТА. 
Алгоритм применения
4. Берутся суммы квадратов остатков для регрессий по
первой трети RSS1 и последней трети RSS3. Рассчитывают
их отношение:
5. Используем F-тест для проверки гомоскедастичности.
Если статистика GQ удовлетворяет неравенству
то гипотеза гомоскедастичности остатков отвергается на 
уровне значимости .
Описание слайда:
ТЕСТ ГОЛДФЕЛДА-КВАНДТА. Алгоритм применения 4. Берутся суммы квадратов остатков для регрессий по первой трети RSS1 и последней трети RSS3. Рассчитывают их отношение: 5. Используем F-тест для проверки гомоскедастичности. Если статистика GQ удовлетворяет неравенству то гипотеза гомоскедастичности остатков отвергается на уровне значимости .

Слайд 29





ТЕСТ ГОЛДФЕЛДА-КВАНДТА. 
Замечание
Тест Голдфелда-Квандта применим и для случая
обратной пропорциональности:
При этом используется та же процедура, но тестовая
статистика равна:
Описание слайда:
ТЕСТ ГОЛДФЕЛДА-КВАНДТА. Замечание Тест Голдфелда-Квандта применим и для случая обратной пропорциональности: При этом используется та же процедура, но тестовая статистика равна:

Слайд 30





ТЕСТ УАЙТА
Предполагается, что дисперсии          связаны
с объясняющими переменными                       в виде:
где f() – квадратичная функция от аргументов. 
 
Т.к. дисперсии          неизвестны, то их заменяют
оценками квадратов отклонений ei2.
Описание слайда:
ТЕСТ УАЙТА Предполагается, что дисперсии связаны с объясняющими переменными в виде: где f() – квадратичная функция от аргументов. Т.к. дисперсии неизвестны, то их заменяют оценками квадратов отклонений ei2.

Слайд 31





ТЕСТ УАЙТА. 
Алгоритм применения 
(на примере трех переменных)
1. Строится уравнение регрессии:
и вычисляются остатки                                 .
2. Оценивают вспомогательное уравнение регрессии:
Описание слайда:
ТЕСТ УАЙТА. Алгоритм применения (на примере трех переменных) 1. Строится уравнение регрессии: и вычисляются остатки . 2. Оценивают вспомогательное уравнение регрессии:

Слайд 32





ТЕСТ УАЙТА. 
Алгоритм применения 
(на примере трех переменных)
3. Определяют из вспомогательного уравнения тестовую
статистику
4. Проверяют общую значимость уравнения с помощью
критерия 2. Если
то гипотеза гомоскедастичности отвергается. Число
степеней свободы k равно числу объясняющих
Переменных вспомогательного уравнения. В частности,
Для рассматриваемого случая k = 9.
Описание слайда:
ТЕСТ УАЙТА. Алгоритм применения (на примере трех переменных) 3. Определяют из вспомогательного уравнения тестовую статистику 4. Проверяют общую значимость уравнения с помощью критерия 2. Если то гипотеза гомоскедастичности отвергается. Число степеней свободы k равно числу объясняющих Переменных вспомогательного уравнения. В частности, Для рассматриваемого случая k = 9.

Слайд 33





ТЕСТ УАЙТА. 
Замечания
Тест Уайта является более общим чем тест
Голдфелда-Квандта.
Описание слайда:
ТЕСТ УАЙТА. Замечания Тест Уайта является более общим чем тест Голдфелда-Квандта.

Слайд 34





КОРРЕКЦИЯ ГЕТЕРОСКЕДАСТИЧНОСТИ
1. Использовать обобщенный метод наименьших
квадратов.
2. Переопределить переменные.
3. Вычисление стандартных ошибок с поправкой на
гетероскедастичность (метод Уайта).
Описание слайда:
КОРРЕКЦИЯ ГЕТЕРОСКЕДАСТИЧНОСТИ 1. Использовать обобщенный метод наименьших квадратов. 2. Переопределить переменные. 3. Вычисление стандартных ошибок с поправкой на гетероскедастичность (метод Уайта).

Слайд 35





ОБОБЩЕННЫЙ 
МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
При нарушении гомоскедастичности и наличии автокорреляции
остатков рекомендуется вместо традиционного МНК
использовать обобщенный МНК. Его для случая устранения
гетероскедастичности часто называют методом взвешенных
наименьших квадратов.
Описание слайда:
ОБОБЩЕННЫЙ МЕТОД НАИМЕНЬШИХ КВАДРАТОВ При нарушении гомоскедастичности и наличии автокорреляции остатков рекомендуется вместо традиционного МНК использовать обобщенный МНК. Его для случая устранения гетероскедастичности часто называют методом взвешенных наименьших квадратов.

Слайд 36





МЕТОД 
ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ. Случай парной регрессии
Получили уравнение регрессии без свободного члена, но с 
дополнительной объясняющей переменной Z и с
«преобразованным» остатком . Можно показать, что для
него выполняются предпосылки 10 – 50 МНК.
Описание слайда:
МЕТОД ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ. Случай парной регрессии Получили уравнение регрессии без свободного члена, но с дополнительной объясняющей переменной Z и с «преобразованным» остатком . Можно показать, что для него выполняются предпосылки 10 – 50 МНК.

Слайд 37





МЕТОД 
ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ. Случай парной регрессии
На практике, значения дисперсии остатков, как
правило, не известны. Для применения метода ВНК
необходимо сделать реалистичные предположения об этих
значениях. Например:
Дисперсии          пропорциональны Xi:
Дисперсии          пропорциональны Xi2:
Описание слайда:
МЕТОД ВЗВЕШЕННЫХ НАИМЕНЬШИХ КВАДРАТОВ. Случай парной регрессии На практике, значения дисперсии остатков, как правило, не известны. Для применения метода ВНК необходимо сделать реалистичные предположения об этих значениях. Например: Дисперсии пропорциональны Xi: Дисперсии пропорциональны Xi2:



Похожие презентации
Mypresentation.ru
Загрузить презентацию