🗊Презентация Грецькі вчені-математики

Категория: Математика
Нажмите для полного просмотра!
Грецькі вчені-математики, слайд №1Грецькі вчені-математики, слайд №2Грецькі вчені-математики, слайд №3Грецькі вчені-математики, слайд №4Грецькі вчені-математики, слайд №5Грецькі вчені-математики, слайд №6Грецькі вчені-математики, слайд №7Грецькі вчені-математики, слайд №8Грецькі вчені-математики, слайд №9Грецькі вчені-математики, слайд №10

Вы можете ознакомиться и скачать презентацию на тему Грецькі вчені-математики. Доклад-сообщение содержит 10 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Презентація з математики
На тему:Грецькі вчені-математики
Описание слайда:
Презентація з математики На тему:Грецькі вчені-математики

Слайд 2





Давньогрецькі математики
           Математика виникла і розвивалася з практичних потреб людини. Наприклад, стародавні єгипетські вчені цікавилися насамперед тим, як застосовувати математичні знання у землевпорядкуванні, спорудженні храмів для богів, палаців і пірамід для фараонів, визначних воєначальників і жерців. На основі практики єгиптяни сформували правила обчислення площ найпростіших плоских фігур, об'ємів куба, прямокутного паралелепіпеда, піраміди з квадратною основою, зокрема зрізаної. Єгипетські землевпорядники, користуючись довгий час мірною вірьовкою, встановили, що трикутник із сторонами 3, 4 і 5 мір завжди прямокутний. Але питанням про те, чи існують прямокутні трикутники з іншим відношенням чисел, якими вимірюються довжини їх сторін, вони не займалися.

Стародавні вавілоняни і єгиптяни не змогли теоретично узагальнити практично набуті знання про число, про математичні залежності між геометричними поняттями—плоскими і просторовими фігурами та їх елементами, про деякі властивості чисел натурального ряду тощо. Це зробили грецькі вчені
Описание слайда:
Давньогрецькі математики Математика виникла і розвивалася з практичних потреб людини. Наприклад, стародавні єгипетські вчені цікавилися насамперед тим, як застосовувати математичні знання у землевпорядкуванні, спорудженні храмів для богів, палаців і пірамід для фараонів, визначних воєначальників і жерців. На основі практики єгиптяни сформували правила обчислення площ найпростіших плоских фігур, об'ємів куба, прямокутного паралелепіпеда, піраміди з квадратною основою, зокрема зрізаної. Єгипетські землевпорядники, користуючись довгий час мірною вірьовкою, встановили, що трикутник із сторонами 3, 4 і 5 мір завжди прямокутний. Але питанням про те, чи існують прямокутні трикутники з іншим відношенням чисел, якими вимірюються довжини їх сторін, вони не займалися. Стародавні вавілоняни і єгиптяни не змогли теоретично узагальнити практично набуті знання про число, про математичні залежності між геометричними поняттями—плоскими і просторовими фігурами та їх елементами, про деякі властивості чисел натурального ряду тощо. Це зробили грецькі вчені

Слайд 3


Грецькі вчені-математики, слайд №3
Описание слайда:

Слайд 4





Фалес Мілетський
Описание слайда:
Фалес Мілетський

Слайд 5





Біографія
Фале́с Міле́тський (грец. Θαλῆς ὁ Μιλήσιος, прибл. 624 до н. е. — 548 до н. е.) — давньогрецький філософ досократського періоду, математик, астроном, засновник іонійської школи натурфілософії, купець і політичний діяч.
Описание слайда:
Біографія Фале́с Міле́тський (грец. Θαλῆς ὁ Μιλήσιος, прибл. 624 до н. е. — 548 до н. е.) — давньогрецький філософ досократського періоду, математик, астроном, засновник іонійської школи натурфілософії, купець і політичний діяч.

Слайд 6





Наукова спадщина
           Фалеса вважають першим грецьким астрономом. Він передбачив сонячне затемнення (28 травня 585 до н. е.). Йому належить заслуга у визначенні часу сонцестояння і рівнодення, у встановленні тривалості року в 365 днів, відкриття факту руху Сонця відносно зірок. У наш час іменем Фалеса названо кратер на видимій стороні Місяця.
            Фалес також має великі заслуги у створенні наукової математики. У нього вперше в історії математики зустрічаються доведення теорем. Якщо єгипетських землемірів задовольняла відповідь на питання «Як?», то Фалес, мабуть, першим у світі поставив питання «Чому?» й успішно відповів на нього. Нині відомо, що багато математичних правил були відкриті набагато раніше, ніж у Стародавній Греції. Але усі — дослідним шляхом. Строго логічне доведення правильності тверджень на підставі загальних положень, прийнятих за достовірні істини, було винайдено греками. Характерна і зовсім нова риса грецької математики полягає в поступовому переході за допомогою доведення від одного твердження до іншого. Саме такий характер математиці був наданий Фалесом. І навіть сьогодні, розпочинаючи доведення, наприклад, теореми про властивості ромба, ми, по суті, міркуємо майже так само, як це робили учні Фалеса.
Описание слайда:
Наукова спадщина Фалеса вважають першим грецьким астрономом. Він передбачив сонячне затемнення (28 травня 585 до н. е.). Йому належить заслуга у визначенні часу сонцестояння і рівнодення, у встановленні тривалості року в 365 днів, відкриття факту руху Сонця відносно зірок. У наш час іменем Фалеса названо кратер на видимій стороні Місяця. Фалес також має великі заслуги у створенні наукової математики. У нього вперше в історії математики зустрічаються доведення теорем. Якщо єгипетських землемірів задовольняла відповідь на питання «Як?», то Фалес, мабуть, першим у світі поставив питання «Чому?» й успішно відповів на нього. Нині відомо, що багато математичних правил були відкриті набагато раніше, ніж у Стародавній Греції. Але усі — дослідним шляхом. Строго логічне доведення правильності тверджень на підставі загальних положень, прийнятих за достовірні істини, було винайдено греками. Характерна і зовсім нова риса грецької математики полягає в поступовому переході за допомогою доведення від одного твердження до іншого. Саме такий характер математиці був наданий Фалесом. І навіть сьогодні, розпочинаючи доведення, наприклад, теореми про властивості ромба, ми, по суті, міркуємо майже так само, як це робили учні Фалеса.

Слайд 7





           Вважається, що Фалес першим познайомив греків з геометрією. Йому приписують відкриття і доведення ряду теорем: про поділ кола діаметром навпіл; про те, що кут, вписаний у півколо, є прямим (Теорема Фалеса); про рівність кутів при основі рівнобедреного трикутника; про рівність вертикальних кутів; про пропорційність відрізків, утворених на прямих, що перетинаються декількома паралельними прямими (Теорема Фалеса (пропорційні відрізки)). Фалес установив, що трикутник повністю визначається стороною і прилеглими до неї кутами.
           Вважається, що Фалес першим познайомив греків з геометрією. Йому приписують відкриття і доведення ряду теорем: про поділ кола діаметром навпіл; про те, що кут, вписаний у півколо, є прямим (Теорема Фалеса); про рівність кутів при основі рівнобедреного трикутника; про рівність вертикальних кутів; про пропорційність відрізків, утворених на прямих, що перетинаються декількома паралельними прямими (Теорема Фалеса (пропорційні відрізки)). Фалес установив, що трикутник повністю визначається стороною і прилеглими до неї кутами.
          Фалес відкрив цікавий спосіб визначення відстані від берега до видимого корабля. Деякі історики стверджують, що для цього він використав ознаку подібності прямокутних трикутників. Фалесу приписують також спосіб визначення висоти різних предметів, зокрема пірамід, за довжиною тіні, коли сонце піднімається над горизонтом на 45 градусів.
Описание слайда:
Вважається, що Фалес першим познайомив греків з геометрією. Йому приписують відкриття і доведення ряду теорем: про поділ кола діаметром навпіл; про те, що кут, вписаний у півколо, є прямим (Теорема Фалеса); про рівність кутів при основі рівнобедреного трикутника; про рівність вертикальних кутів; про пропорційність відрізків, утворених на прямих, що перетинаються декількома паралельними прямими (Теорема Фалеса (пропорційні відрізки)). Фалес установив, що трикутник повністю визначається стороною і прилеглими до неї кутами. Вважається, що Фалес першим познайомив греків з геометрією. Йому приписують відкриття і доведення ряду теорем: про поділ кола діаметром навпіл; про те, що кут, вписаний у півколо, є прямим (Теорема Фалеса); про рівність кутів при основі рівнобедреного трикутника; про рівність вертикальних кутів; про пропорційність відрізків, утворених на прямих, що перетинаються декількома паралельними прямими (Теорема Фалеса (пропорційні відрізки)). Фалес установив, що трикутник повністю визначається стороною і прилеглими до неї кутами. Фалес відкрив цікавий спосіб визначення відстані від берега до видимого корабля. Деякі історики стверджують, що для цього він використав ознаку подібності прямокутних трикутників. Фалесу приписують також спосіб визначення висоти різних предметів, зокрема пірамід, за довжиною тіні, коли сонце піднімається над горизонтом на 45 градусів.

Слайд 8


Грецькі вчені-математики, слайд №8
Описание слайда:

Слайд 9





Піфагор
Описание слайда:
Піфагор

Слайд 10





П
Описание слайда:
П



Похожие презентации
Mypresentation.ru
Загрузить презентацию