🗊Презентация Количественное описание математических объектов

Категория: Математика
Нажмите для полного просмотра!
Количественное описание математических объектов, слайд №1Количественное описание математических объектов, слайд №2Количественное описание математических объектов, слайд №3Количественное описание математических объектов, слайд №4Количественное описание математических объектов, слайд №5Количественное описание математических объектов, слайд №6Количественное описание математических объектов, слайд №7Количественное описание математических объектов, слайд №8Количественное описание математических объектов, слайд №9Количественное описание математических объектов, слайд №10Количественное описание математических объектов, слайд №11Количественное описание математических объектов, слайд №12Количественное описание математических объектов, слайд №13Количественное описание математических объектов, слайд №14Количественное описание математических объектов, слайд №15Количественное описание математических объектов, слайд №16Количественное описание математических объектов, слайд №17Количественное описание математических объектов, слайд №18Количественное описание математических объектов, слайд №19Количественное описание математических объектов, слайд №20Количественное описание математических объектов, слайд №21Количественное описание математических объектов, слайд №22Количественное описание математических объектов, слайд №23Количественное описание математических объектов, слайд №24Количественное описание математических объектов, слайд №25Количественное описание математических объектов, слайд №26Количественное описание математических объектов, слайд №27Количественное описание математических объектов, слайд №28Количественное описание математических объектов, слайд №29Количественное описание математических объектов, слайд №30Количественное описание математических объектов, слайд №31Количественное описание математических объектов, слайд №32Количественное описание математических объектов, слайд №33Количественное описание математических объектов, слайд №34Количественное описание математических объектов, слайд №35Количественное описание математических объектов, слайд №36Количественное описание математических объектов, слайд №37Количественное описание математических объектов, слайд №38Количественное описание математических объектов, слайд №39Количественное описание математических объектов, слайд №40Количественное описание математических объектов, слайд №41Количественное описание математических объектов, слайд №42Количественное описание математических объектов, слайд №43Количественное описание математических объектов, слайд №44Количественное описание математических объектов, слайд №45Количественное описание математических объектов, слайд №46Количественное описание математических объектов, слайд №47Количественное описание математических объектов, слайд №48Количественное описание математических объектов, слайд №49

Содержание

Вы можете ознакомиться и скачать презентацию на тему Количественное описание математических объектов. Доклад-сообщение содержит 49 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Количественное описание математических объектов

Косьмин Сергей Николаевич
Описание слайда:
Количественное описание математических объектов Косьмин Сергей Николаевич

Слайд 2





Количественное описание математических объектов
Алгебраические структуры


Системы счисления
Запись чисел в позиционной системе счисления
Экспоненциальная форма числа
Перевод числа из любой системы в десятичную
Перевод числа из десятичной системы счисления
Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 3





Алгебраической структурой называется множество вместе с операциями, определёнными на нём.
Алгебраической структурой называется множество вместе с операциями, определёнными на нём.
Алгебраическая структура вместе с правилами вычислений, правилами  вывода и всеми теоремами называется алгебраической системой.
Описание слайда:
Алгебраической структурой называется множество вместе с операциями, определёнными на нём. Алгебраической структурой называется множество вместе с операциями, определёнными на нём. Алгебраическая структура вместе с правилами вычислений, правилами вывода и всеми теоремами называется алгебраической системой.

Слайд 4





Полугруппой называется множество S с определённой на нём бинарной операцией , которая ассоциативна:
Полугруппой называется множество S с определённой на нём бинарной операцией , которая ассоциативна:
x  y  z = (x  y)  z = x  (y  z) = y  (x  z), где x  S, y  S, z  S.
 
Пример полугруппы:
 (N; +) - алгебра натуральных чисел.
Описание слайда:
Полугруппой называется множество S с определённой на нём бинарной операцией , которая ассоциативна: Полугруппой называется множество S с определённой на нём бинарной операцией , которая ассоциативна: x  y  z = (x  y)  z = x  (y  z) = y  (x  z), где x  S, y  S, z  S. Пример полугруппы: (N; +) - алгебра натуральных чисел.

Слайд 5





Моноидом называется множество M с определённой на нём бинарной 
операцией , которая
Моноидом называется множество M с определённой на нём бинарной 
операцией , которая
-  ассоциативна
x  y  z = (x  y)  z = x  (y  z) = y  (x  z), где x  M, y  M, z  M, и 
 -  имеет единичный элемент e по отношению к данной операции:   e  x = x = x  e.
Полугруппы и моноиды используются в 
теории языков при обработке строк 
символов.
Описание слайда:
Моноидом называется множество M с определённой на нём бинарной операцией , которая Моноидом называется множество M с определённой на нём бинарной операцией , которая - ассоциативна x  y  z = (x  y)  z = x  (y  z) = y  (x  z), где x  M, y  M, z  M, и - имеет единичный элемент e по отношению к данной операции: e  x = x = x  e. Полугруппы и моноиды используются в теории языков при обработке строк символов.

Слайд 6





Группой называется множество G с  бинарной операцией , которая (x), xG
ассоциативна на этом множестве;
Группой называется множество G с  бинарной операцией , которая (x), xG
ассоциативна на этом множестве;
   имеет единицу: e  x = x = x  e
   и обратный элемент: x  y = e = y  x
по отношению к данной операции.
Пример группы:
 (Z; +) - алгебра целых чисел.
Описание слайда:
Группой называется множество G с  бинарной операцией , которая (x), xG ассоциативна на этом множестве; Группой называется множество G с  бинарной операцией , которая (x), xG ассоциативна на этом множестве; имеет единицу: e  x = x = x  e и обратный элемент: x  y = e = y  x по отношению к данной операции. Пример группы: (Z; +) - алгебра целых чисел.

Слайд 7





Кольцом называется множество R c двумя определёнными на нём бинарными операциями  , которые:
Кольцом называется множество R c двумя определёнными на нём бинарными операциями  , которые:
Обе   ассоциативны;
Вторая  операция: ассоциативна, коммутативна и имеет единицу, называемую нулём; имеет обратные элементы и дистрибутивна по отношению к первой операции.
Пример кольца:
 (Z; +; *) - алгебра целых чисел.
Описание слайда:
Кольцом называется множество R c двумя определёнными на нём бинарными операциями  , которые: Кольцом называется множество R c двумя определёнными на нём бинарными операциями  , которые: Обе   ассоциативны; Вторая  операция: ассоциативна, коммутативна и имеет единицу, называемую нулём; имеет обратные элементы и дистрибутивна по отношению к первой операции. Пример кольца: (Z; +; *) - алгебра целых чисел.

Слайд 8





Числовым кольцом называется множество, элементами которого являются числа, а операциями: сложение и умножение.
Числовым кольцом называется множество, элементами которого являются числа, а операциями: сложение и умножение.
Областью целостности называется кольцо без ненулевых делителей нуля (то есть без отличных от нуля элементов, произведение которых равно нулю).
Всякое числовое кольцо является областью целостности!
Описание слайда:
Числовым кольцом называется множество, элементами которого являются числа, а операциями: сложение и умножение. Числовым кольцом называется множество, элементами которого являются числа, а операциями: сложение и умножение. Областью целостности называется кольцо без ненулевых делителей нуля (то есть без отличных от нуля элементов, произведение которых равно нулю). Всякое числовое кольцо является областью целостности!

Слайд 9





Коммутативным кольцом называется кольцо с коммутативной второй операцией (умножения).
Коммутативным кольцом называется кольцо с коммутативной второй операцией (умножения).
Ассоциативным кольцом называется кольцо с ассоциативной второй операцией (умножения).
Кольцом с единицей называется кольцо с второй операцией (умножения), имеющей нейтральный по отношению к ней элемент (единицу).
Описание слайда:
Коммутативным кольцом называется кольцо с коммутативной второй операцией (умножения). Коммутативным кольцом называется кольцо с коммутативной второй операцией (умножения). Ассоциативным кольцом называется кольцо с ассоциативной второй операцией (умножения). Кольцом с единицей называется кольцо с второй операцией (умножения), имеющей нейтральный по отношению к ней элемент (единицу).

Слайд 10





Полукольцом называется множество, на котором определены операции сложения и умножения, образующие коммутативную полугруппу относительно сложения, а умножение дистрибутивно относительно сложения.
Полукольцом называется множество, на котором определены операции сложения и умножения, образующие коммутативную полугруппу относительно сложения, а умножение дистрибутивно относительно сложения.
Пример полукольца:
 (N; +; *) - алгебра натуральных чисел.
Описание слайда:
Полукольцом называется множество, на котором определены операции сложения и умножения, образующие коммутативную полугруппу относительно сложения, а умножение дистрибутивно относительно сложения. Полукольцом называется множество, на котором определены операции сложения и умножения, образующие коммутативную полугруппу относительно сложения, а умножение дистрибутивно относительно сложения. Пример полукольца: (N; +; *) - алгебра натуральных чисел.

Слайд 11





Полем называется коммутативное и ассоциативное кольцо с единицей, в котором для любого отличного от нуля элемента найдётся обратный ему элемент (a * a-1 = e).
Полем называется коммутативное и ассоциативное кольцо с единицей, в котором для любого отличного от нуля элемента найдётся обратный ему элемент (a * a-1 = e).
Пример поля:
 (Q; +; *) - алгебра рациональных чисел.
Числовым полем называется поле, элементами которого являются числа.
Вычисляя, мы возделываем числовое поле!
Описание слайда:
Полем называется коммутативное и ассоциативное кольцо с единицей, в котором для любого отличного от нуля элемента найдётся обратный ему элемент (a * a-1 = e). Полем называется коммутативное и ассоциативное кольцо с единицей, в котором для любого отличного от нуля элемента найдётся обратный ему элемент (a * a-1 = e). Пример поля: (Q; +; *) - алгебра рациональных чисел. Числовым полем называется поле, элементами которого являются числа. Вычисляя, мы возделываем числовое поле!

Слайд 12





Количественное описание математических объектов
Алгебраические структуры
Системы счисления


Запись чисел в позиционной системе счисления
Экспоненциальная форма числа
Перевод числа из любой системы в десятичную
Перевод числа из десятичной системы счисления
Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 13





        Системой счисления называется система, позволяющая представлять на письме счётные величины и выполнять над ними арифметические операции: сложения, вычитания, умножения, деления. 
        Системой счисления называется система, позволяющая представлять на письме счётные величины и выполнять над ними арифметические операции: сложения, вычитания, умножения, деления.
Описание слайда:
Системой счисления называется система, позволяющая представлять на письме счётные величины и выполнять над ними арифметические операции: сложения, вычитания, умножения, деления. Системой счисления называется система, позволяющая представлять на письме счётные величины и выполнять над ними арифметические операции: сложения, вычитания, умножения, деления.

Слайд 14





Человечество училось считать 
более 2600 лет. 
Завершением обучения принято 
считать событие 
“нахождения нуля на Абаке”, 
произошедшее 
в Индии в VI веке нашей эры.
Описание слайда:
Человечество училось считать более 2600 лет. Завершением обучения принято считать событие “нахождения нуля на Абаке”, произошедшее в Индии в VI веке нашей эры.

Слайд 15





АБАК
Описание слайда:
АБАК

Слайд 16


Количественное описание математических объектов, слайд №16
Описание слайда:

Слайд 17





 На первом этапе: 
счётная величина представлялась в записи,  как  картина, с помощью иероглифов, изображающих представимые, для производящего счет,  величины.

   Местоположение иероглифа не имело никакого значения для записи счётной величины.

   Такие системы счисления ныне называются непозиционные.
Описание слайда:
На первом этапе: счётная величина представлялась в записи, как картина, с помощью иероглифов, изображающих представимые, для производящего счет, величины. Местоположение иероглифа не имело никакого значения для записи счётной величины. Такие системы счисления ныне называются непозиционные.

Слайд 18





Непозиционными системами счисления называются системы счисления, в которых положение знака (цифры) в записи числа не влияет на значение счетной величины.
          Непозиционные системы счисления являются исторически первыми. 
На первом этапе люди учились представлять счётные величины знаками.
Описание слайда:
Непозиционными системами счисления называются системы счисления, в которых положение знака (цифры) в записи числа не влияет на значение счетной величины. Непозиционные системы счисления являются исторически первыми. На первом этапе люди учились представлять счётные величины знаками.

Слайд 19





 На втором этапе: 
значение счетной величины становится зависимым от положения знака  в записи числа.  Запись значения  счётной величины производится, с помощью конечного числа знаков - цифр, изображающих представимые, для производящего счет,  величины.
Это переходный этап к построению позиционных систем  счисления для записи счетной величины. На данном этапе человечество ищет эффективный метод кодирования в предсталении записи числа.
Описание слайда:
На втором этапе: значение счетной величины становится зависимым от положения знака в записи числа. Запись значения счётной величины производится, с помощью конечного числа знаков - цифр, изображающих представимые, для производящего счет, величины. Это переходный этап к построению позиционных систем счисления для записи счетной величины. На данном этапе человечество ищет эффективный метод кодирования в предсталении записи числа.

Слайд 20





 На третьем этапе:  
запись значения  счётной величины производится, с помощью конечного числа знаков – цифр базиса системы счисления, изображающих представимые, для производящего счет,  величины.
 Построены позиционные системы  счисления для записи счетной величины. Найдена формула числа и основные алгоритмы арифметических операций для позиционных систем счисления.
Описание слайда:
На третьем этапе: запись значения счётной величины производится, с помощью конечного числа знаков – цифр базиса системы счисления, изображающих представимые, для производящего счет, величины. Построены позиционные системы счисления для записи счетной величины. Найдена формула числа и основные алгоритмы арифметических операций для позиционных систем счисления.

Слайд 21





Позиционными системами счисления называются системы счисления, в которых положение знака (цифры) в записи числа  влияет на значение счетной величины.

 Позиционные системы счисления позволяют, опираясь на единые алгоритмы выполнения арифметических действий, выполнять счёт разными базисами.
Описание слайда:
Позиционными системами счисления называются системы счисления, в которых положение знака (цифры) в записи числа влияет на значение счетной величины. Позиционные системы счисления позволяют, опираясь на единые алгоритмы выполнения арифметических действий, выполнять счёт разными базисами.

Слайд 22





Количественное описание математических объектов
Алгебраические структуры
Системы счисления
Запись чисел в позиционной системе счисления


Экспоненциальная форма числа
Перевод числа из любой системы в десятичную
Перевод числа из десятичной системы счисления
Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 23





Счёт – это измерение мощности множества счётной величины мощностью эталонного множества, называемого 
базисом системы счисления.

Результат счёта показывает сколько эталонов содержится в счётной величине.
Описание слайда:
Счёт – это измерение мощности множества счётной величины мощностью эталонного множества, называемого базисом системы счисления. Результат счёта показывает сколько эталонов содержится в счётной величине.

Слайд 24





Требования к эталону:
Эталон и измеряемая величина должны быть одной природы.
Элементы (состояния) эталонного множества должны быть представимы системе производящей счёт.
Счёт можно производить эталоном любой мощности.
Описание слайда:
Требования к эталону: Эталон и измеряемая величина должны быть одной природы. Элементы (состояния) эталонного множества должны быть представимы системе производящей счёт. Счёт можно производить эталоном любой мощности.

Слайд 25





Элементы эталонного множества обозначаются цифрами.
Цифра выражает мощность подмножества эталонного множества.
В десятичной системе счисления для записи состояний эталонного множества используются арабские цифры: {0,1,2,3,4,5,6,7,8,9} 
Расширение базиса производится буквами латинского алфавита.
Описание слайда:
Элементы эталонного множества обозначаются цифрами. Цифра выражает мощность подмножества эталонного множества. В десятичной системе счисления для записи состояний эталонного множества используются арабские цифры: {0,1,2,3,4,5,6,7,8,9} Расширение базиса производится буквами латинского алфавита.

Слайд 26





Если счётная величина не превосходит базис системы счисления, то она выражается на письме цифрой.

Так записывается в этом случае мощность множества счётной величины.
Описание слайда:
Если счётная величина не превосходит базис системы счисления, то она выражается на письме цифрой. Так записывается в этом случае мощность множества счётной величины.

Слайд 27





Если счётная величина превышает по мощности базис системы счисления (хотя бы на единицу), то на письме она выражается ЧИСЛОМ.
 Так записывается в этом случае мощность множества счётной величины.
Описание слайда:
Если счётная величина превышает по мощности базис системы счисления (хотя бы на единицу), то на письме она выражается ЧИСЛОМ. Так записывается в этом случае мощность множества счётной величины.

Слайд 28





Переход от ЦИФРЫ к числу означает выход СЧЁТНОЙ  ВЕЛИЧИНЫ за пределы БАЗИСА системы счисления.
Переход от ЦИФРЫ к числу означает выход СЧЁТНОЙ  ВЕЛИЧИНЫ за пределы БАЗИСА системы счисления.
Описание слайда:
Переход от ЦИФРЫ к числу означает выход СЧЁТНОЙ ВЕЛИЧИНЫ за пределы БАЗИСА системы счисления. Переход от ЦИФРЫ к числу означает выход СЧЁТНОЙ ВЕЛИЧИНЫ за пределы БАЗИСА системы счисления.

Слайд 29





В позиционных системах счисления число представляется  ПОЛИНОМОМ:



          abcp = a*P2 + b*P1 + c*P0
В позиционных системах счисления число представляется  ПОЛИНОМОМ:



          abcp = a*P2 + b*P1 + c*P0
                                 Нулевой порядок числа 
                 (Число нулевого порядка - ЦИФРА)
                             Первый порядок числа
(Число первого порядка представлено двумя разрядами.)
                             Второй порядок числа
(Число второго порядка представлено тремя разрядами … 
  и так далее.)
Описание слайда:
В позиционных системах счисления число представляется ПОЛИНОМОМ: abcp = a*P2 + b*P1 + c*P0 В позиционных системах счисления число представляется ПОЛИНОМОМ: abcp = a*P2 + b*P1 + c*P0 Нулевой порядок числа (Число нулевого порядка - ЦИФРА) Первый порядок числа (Число первого порядка представлено двумя разрядами.) Второй порядок числа (Число второго порядка представлено тремя разрядами … и так далее.)

Слайд 30





Считать можно базисами любой мощности!!! 
ПРИНЯТО: 
Для десятичной системы счисления НЕ указывать нижним индексом мощность базиса системы счисления в свёрнутой форме представления числа.
Для иных систем счисления нижний индекс ОБЯЗАТЕЛЕН!!!
Описание слайда:
Считать можно базисами любой мощности!!! ПРИНЯТО: Для десятичной системы счисления НЕ указывать нижним индексом мощность базиса системы счисления в свёрнутой форме представления числа. Для иных систем счисления нижний индекс ОБЯЗАТЕЛЕН!!!

Слайд 31





ПРАВИЛО ПРОВЕРКИ ЗАПИСИ ЧИСЛА
Число любой (P -ичной) позиционной системы счисления записано правильно, если в записи числа, в свёрнутой форме, используются цифры не превышающие базис системы счисления:
      abcP ,      где  a < P; b < P; c < P.
Описание слайда:
ПРАВИЛО ПРОВЕРКИ ЗАПИСИ ЧИСЛА Число любой (P -ичной) позиционной системы счисления записано правильно, если в записи числа, в свёрнутой форме, используются цифры не превышающие базис системы счисления: abcP , где a < P; b < P; c < P.

Слайд 32





Операции с числами
Числа можно:
Складывать  (+),  2. Вычитать (-),
 3.  Умножать (*),      4. Делить ( : или / ).

Оперировать числами – значит оперировать мощностями множеств счётных величин, которые характеризуют эти числа.
Операции над числами изучает арифметика.
Описание слайда:
Операции с числами Числа можно: Складывать (+), 2. Вычитать (-), 3. Умножать (*), 4. Делить ( : или / ). Оперировать числами – значит оперировать мощностями множеств счётных величин, которые характеризуют эти числа. Операции над числами изучает арифметика.

Слайд 33





Правила выполнения арифметических операций ЕДИНЫ для любых позиционных систем счисления!
Описание слайда:
Правила выполнения арифметических операций ЕДИНЫ для любых позиционных систем счисления!

Слайд 34





Операции с числами выполнимы, если: 
- операнды (участники операции) записаны верно, и 
- они относятся к одной системе счисления.
Описание слайда:
Операции с числами выполнимы, если: - операнды (участники операции) записаны верно, и - они относятся к одной системе счисления.

Слайд 35





Операции над числами ввёл Абу Джафар Мохаммед бен Муса аль Хорезми (Отец Джафара Мохаммед сын Мусы из Хорезма). Он научил народы Земли считать!
Описание слайда:
Операции над числами ввёл Абу Джафар Мохаммед бен Муса аль Хорезми (Отец Джафара Мохаммед сын Мусы из Хорезма). Он научил народы Земли считать!

Слайд 36





Абу Джафар Мохаммед бен Муса аль Хорезми
Описание слайда:
Абу Джафар Мохаммед бен Муса аль Хорезми

Слайд 37





Оно утверждает, что счётная величина состоит из одного базиса.
   {0,1} – базис двоичной                12
  системы счисления                 + 12
                                                       102        
{0,1,2} - базис троичной                         23
системы счисления                              +13
                                                                      103
{0,1,2,3} - базис четверичной      34
системы счисления                    +14 
                                                    104
Описание слайда:
Оно утверждает, что счётная величина состоит из одного базиса. {0,1} – базис двоичной 12 системы счисления + 12 102 {0,1,2} - базис троичной 23 системы счисления +13 103 {0,1,2,3} - базис четверичной 34 системы счисления +14 104

Слайд 38





В позиционных системах счисления число представляется  ПОЛИНОМОМ:



          abcp = a*102 + b*101 + c*100
В позиционных системах счисления число представляется  ПОЛИНОМОМ:



          abcp = a*102 + b*101 + c*100
                                 Нулевой порядок числа 
                 (Число нулевого порядка - ЦИФРА)
                             Первый порядок числа
(Число первого порядка представлено двумя разрядами.)
                             Второй порядок числа
(Число второго порядка представлено тремя разрядами … 
  и так далее.)
Описание слайда:
В позиционных системах счисления число представляется ПОЛИНОМОМ: abcp = a*102 + b*101 + c*100 В позиционных системах счисления число представляется ПОЛИНОМОМ: abcp = a*102 + b*101 + c*100 Нулевой порядок числа (Число нулевого порядка - ЦИФРА) Первый порядок числа (Число первого порядка представлено двумя разрядами.) Второй порядок числа (Число второго порядка представлено тремя разрядами … и так далее.)

Слайд 39





Если операнды (участники операции): 
Записаны не верно, и (или)
Относятся к разным системам счисления, то

операция невозможна; и (или)
Следует привести числа к одной системе счисления!
Описание слайда:
Если операнды (участники операции): Записаны не верно, и (или) Относятся к разным системам счисления, то операция невозможна; и (или) Следует привести числа к одной системе счисления!

Слайд 40





Количественное описание математических объектов
Алгебраические структуры
Системы счисления
Запись чисел в позиционной системе счисления
Экспоненциальная форма числа


Перевод числа из любой системы в десятичную
Перевод числа из десятичной системы счисления
Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 41





При высокоточных вычислениях на ограниченной разрядной сетке машины число представляют в экспоненциальной форме двумя параметрами: 
При высокоточных вычислениях на ограниченной разрядной сетке машины число представляют в экспоненциальной форме двумя параметрами: 
                     256 = 0,256 * 103
Описание слайда:
При высокоточных вычислениях на ограниченной разрядной сетке машины число представляют в экспоненциальной форме двумя параметрами: При высокоточных вычислениях на ограниченной разрядной сетке машины число представляют в экспоненциальной форме двумя параметрами: 256 = 0,256 * 103

Слайд 42





Количественное описание математических объектов
Алгебраические структуры
Системы счисления
Запись чисел в позиционной системе счисления
Экспоненциальная форма числа
Перевод числа из любой системы в десятичную


Перевод числа из десятичной системы счисления
Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 43





Перевод числа из любой системы в десятичную

  При переводе числа из любой системы счисления в десятичную расчёт производится по полиномной формуле числа по правилам, принятым в десятичной системе счисления, и с базисом, выраженным десятичной цифрой. Десятичная запись результата будет искомым числом.
Описание слайда:
Перевод числа из любой системы в десятичную При переводе числа из любой системы счисления в десятичную расчёт производится по полиномной формуле числа по правилам, принятым в десятичной системе счисления, и с базисом, выраженным десятичной цифрой. Десятичная запись результата будет искомым числом.

Слайд 44





Количественное описание математических объектов
Алгебраические структуры
Системы счисления
Запись чисел в позиционной системе счисления
Экспоненциальная форма числа
Перевод числа из любой системы в десятичную
Перевод числа из десятичной системы счисления


Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 45





Перевод числа из десятичной системы счисления

   Число делится в десятичной системе счисления на основание P-ичной системы счисления, выраженное десятичной цифрой. Остаток от деления даёт последнюю цифру P-ичной записи числа.
Неполное частное снова делится на основание P-ичной системы счисления, формируя предпоследнюю цифру P-ичной записи числа.
Процесс продолжается, пока неполное частное не станет меньше основания системы счисления.
Описание слайда:
Перевод числа из десятичной системы счисления Число делится в десятичной системе счисления на основание P-ичной системы счисления, выраженное десятичной цифрой. Остаток от деления даёт последнюю цифру P-ичной записи числа. Неполное частное снова делится на основание P-ичной системы счисления, формируя предпоследнюю цифру P-ичной записи числа. Процесс продолжается, пока неполное частное не станет меньше основания системы счисления.

Слайд 46





Количественное описание математических объектов
Алгебраические структуры
Системы счисления
Запись чисел в позиционной системе счисления
Экспоненциальная форма числа
Перевод числа из любой системы в десятичную
Перевод числа из десятичной системы счисления
Перевод чисел в системах кратных двум
Описание слайда:
Количественное описание математических объектов Алгебраические структуры Системы счисления Запись чисел в позиционной системе счисления Экспоненциальная форма числа Перевод числа из любой системы в десятичную Перевод числа из десятичной системы счисления Перевод чисел в системах кратных двум

Слайд 47





Перевод чисел в системах с базисами, кратными двум
Описание слайда:
Перевод чисел в системах с базисами, кратными двум

Слайд 48





Перевод чисел в системах с базисами кратными двум
   Переход от двоичной системы счисления к шестнадцатеричной и обратно производится через замену тетрад двоичных цифр на шестнадцатеричную запись числа.
Описание слайда:
Перевод чисел в системах с базисами кратными двум Переход от двоичной системы счисления к шестнадцатеричной и обратно производится через замену тетрад двоичных цифр на шестнадцатеричную запись числа.

Слайд 49


Количественное описание математических объектов, слайд №49
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию