🗊Презентация Корреляция. Парная регрессия

Категория: Математика
Нажмите для полного просмотра!
Корреляция. Парная регрессия, слайд №1Корреляция. Парная регрессия, слайд №2Корреляция. Парная регрессия, слайд №3Корреляция. Парная регрессия, слайд №4Корреляция. Парная регрессия, слайд №5Корреляция. Парная регрессия, слайд №6Корреляция. Парная регрессия, слайд №7Корреляция. Парная регрессия, слайд №8Корреляция. Парная регрессия, слайд №9Корреляция. Парная регрессия, слайд №10Корреляция. Парная регрессия, слайд №11Корреляция. Парная регрессия, слайд №12Корреляция. Парная регрессия, слайд №13Корреляция. Парная регрессия, слайд №14Корреляция. Парная регрессия, слайд №15Корреляция. Парная регрессия, слайд №16Корреляция. Парная регрессия, слайд №17Корреляция. Парная регрессия, слайд №18Корреляция. Парная регрессия, слайд №19Корреляция. Парная регрессия, слайд №20Корреляция. Парная регрессия, слайд №21Корреляция. Парная регрессия, слайд №22Корреляция. Парная регрессия, слайд №23

Содержание

Вы можете ознакомиться и скачать презентацию на тему Корреляция. Парная регрессия. Доклад-сообщение содержит 23 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Э К О Н О М Е Т Р И К А
Описание слайда:
Э К О Н О М Е Т Р И К А

Слайд 2





Тема 2. Корреляция.  Парная регрессия.
Функциональные и корреляционные типы связей. Ковариация, корреляция. 
Анализ линейной статистической связи экономических данных, корреляция; вычисление коэффициентов корреляции, проверка значимости.
Измерение тесноты связи между показателями. Анализ матрицы коэффициентов парной корреляции.
Понятия регрессионного анализа: зависимые и независимые переменные.
Предпосылки применения метода наименьших квадратов (МНК). 
Свойства оценок метода наименьших квадратов (МНК).
Линейная модель парной регрессии. Оценка параметров модели с помощью метода наименьших квадратов (МНК).
Показатели качества регрессии модели парной регрессии.
 Анализ статистической значимости параметров модели парной регрессии.
Интервальная оценка параметров модели парной регрессии.
Проверка выполнения предпосылок МНК.
Интервалы прогноза по линейному уравнению парной регрессии.(Прогнозирование  с применением уравнения регрессии).
Понятие и причины гетероскедастичности. Последствия  гетероскедастичности. Обнаружение  гетероскедастичности.
Нелинейная регрессия. Нелинейные модели и их линеаризация.
Описание слайда:
Тема 2. Корреляция. Парная регрессия. Функциональные и корреляционные типы связей. Ковариация, корреляция. Анализ линейной статистической связи экономических данных, корреляция; вычисление коэффициентов корреляции, проверка значимости. Измерение тесноты связи между показателями. Анализ матрицы коэффициентов парной корреляции. Понятия регрессионного анализа: зависимые и независимые переменные. Предпосылки применения метода наименьших квадратов (МНК). Свойства оценок метода наименьших квадратов (МНК). Линейная модель парной регрессии. Оценка параметров модели с помощью метода наименьших квадратов (МНК). Показатели качества регрессии модели парной регрессии. Анализ статистической значимости параметров модели парной регрессии. Интервальная оценка параметров модели парной регрессии. Проверка выполнения предпосылок МНК. Интервалы прогноза по линейному уравнению парной регрессии.(Прогнозирование с применением уравнения регрессии). Понятие и причины гетероскедастичности. Последствия гетероскедастичности. Обнаружение гетероскедастичности. Нелинейная регрессия. Нелинейные модели и их линеаризация.

Слайд 3





Функциональные и корреляционные типы связей
Рассматривая зависимости между признаками, выделяют две категории зависимости: 
   1) функциональные и 2) корреляционные.
Зависимость величины Y от Х называется функциональной,  если каждому значению величины Х соответствует единственное значение величины У.
Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных.
 
Описание слайда:
Функциональные и корреляционные типы связей Рассматривая зависимости между признаками, выделяют две категории зависимости: 1) функциональные и 2) корреляционные. Зависимость величины Y от Х называется функциональной, если каждому значению величины Х соответствует единственное значение величины У. Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных.  

Слайд 4


Корреляция. Парная регрессия, слайд №4
Описание слайда:

Слайд 5





Корреляция
Основная задача корреляционного анализа заключается в выявлении взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации. Кроме того, с помощью корреляционного анализа решаются следующие задачи:
 отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связи между ними; 
обнаружение ранее неизвестных причинных связей.
Описание слайда:
Корреляция Основная задача корреляционного анализа заключается в выявлении взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации. Кроме того, с помощью корреляционного анализа решаются следующие задачи: отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения степени связи между ними; обнаружение ранее неизвестных причинных связей.

Слайд 6





При изучении взаимосвязи между двумя факторами их, как правило, обозначают  X и Y                                                        
При изучении взаимосвязи между двумя факторами их, как правило, обозначают  X и Y                                                        
Для измерения силы связи между двумя переменными используется  статистическая характеристика, называемая
  коэффициентом корреляции
Описание слайда:
При изучении взаимосвязи между двумя факторами их, как правило, обозначают X и Y При изучении взаимосвязи между двумя факторами их, как правило, обозначают X и Y Для измерения силы связи между двумя переменными используется статистическая характеристика, называемая коэффициентом корреляции

Слайд 7





Оценка значимости коэффициента корреляции
Описание слайда:
Оценка значимости коэффициента корреляции

Слайд 8





Вычисление коэффициентов парной корреляции
Описание слайда:
Вычисление коэффициентов парной корреляции

Слайд 9


Корреляция. Парная регрессия, слайд №9
Описание слайда:

Слайд 10





Влияние аномальных наблюдений на результаты вычислений
Описание слайда:
Влияние аномальных наблюдений на результаты вычислений

Слайд 11


Корреляция. Парная регрессия, слайд №11
Описание слайда:

Слайд 12





Матрица коэффициентов парной корреляции 
Коэффициенты парной корреляции используются для измерения силы линейных связей различных пар признаков из их множества. Для множества признаков получают матрицу коэффициентов парной корреляции R.
Описание слайда:
Матрица коэффициентов парной корреляции Коэффициенты парной корреляции используются для измерения силы линейных связей различных пар признаков из их множества. Для множества признаков получают матрицу коэффициентов парной корреляции R.

Слайд 13





Задача 1.   Задание по эконометрическому моделированию стоимости квартир в Московской области

Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость  коэффициентов  корреляции.
Постройте поле корреляции результативного признака и наиболее тесно связанного с ним  фактора.
 Рассчитайте параметры линейной парной регрессии.
 Оцените качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера.
Осуществите прогнозирование среднего значения показателя  при уровне значимости  ,  если прогнозное значения фактора  составит 80% от его максимального значения. Представьте графически: фактические и модельные значения,  точки прогноза.
Используя пошаговую множественную регрессию (метод исключения или метод включения), постройте модель формирования цены квартиры за счёт значимых факторов. Дайте экономическую интерпретацию коэффициентов модели регрессии.
Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности,  - и  - коэффициентов.
 
Описание слайда:
Задача 1. Задание по эконометрическому моделированию стоимости квартир в Московской области Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость коэффициентов корреляции. Постройте поле корреляции результативного признака и наиболее тесно связанного с ним фактора.  Рассчитайте параметры линейной парной регрессии.  Оцените качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Осуществите прогнозирование среднего значения показателя при уровне значимости , если прогнозное значения фактора составит 80% от его максимального значения. Представьте графически: фактические и модельные значения, точки прогноза. Используя пошаговую множественную регрессию (метод исключения или метод включения), постройте модель формирования цены квартиры за счёт значимых факторов. Дайте экономическую интерпретацию коэффициентов модели регрессии. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности,  - и  - коэффициентов.  

Слайд 14





Регрессионный анализ 
Регрессионный анализ 
предназначен для исследования зависимости исследуемой переменной от различных факторов и отображения их взаимосвязи в форме регрессионной модели.
В регрессионных моделях зависимая переменная Y  может быть представлена  в виде  функции f (Х), где -   Х1,Х2,…,Хm  независимые (объясняющие) переменные, или факторы. 
Связь между переменной Y и m независимыми факторами Х можно охарактеризовать функцией регрессии Y= f (Х1,Х2,…,Хm ),  которая показывает, каково будет в среднем значение переменной yi, если переменные Xi примут конкретные значения.
Описание слайда:
Регрессионный анализ Регрессионный анализ предназначен для исследования зависимости исследуемой переменной от различных факторов и отображения их взаимосвязи в форме регрессионной модели. В регрессионных моделях зависимая переменная Y может быть представлена в виде функции f (Х), где - Х1,Х2,…,Хm независимые (объясняющие) переменные, или факторы. Связь между переменной Y и m независимыми факторами Х можно охарактеризовать функцией регрессии Y= f (Х1,Х2,…,Хm ), которая показывает, каково будет в среднем значение переменной yi, если переменные Xi примут конкретные значения.

Слайд 15





Примеры задач, решаемых  с помощью регрессионных моделей

Исследование зависимости заработной платы (Y) от возраста (X1), уровня образования (X2), пола (X3), стажа работы (X4) (                                                      )
Прогноз и планирование выпускаемой продукции по факторам производства (производственная функция  Кобба – Дугласа  означает, что объем выпуска  продукции (Y), является функцией количества капитала   ( K )  и количества (L) труда                             ).
Прогноз объемов потребления продукции или услуг определенного вида (кривая Энгеля 
 
                                        
    где  Y -удельная величина спроса, Х - среднедушевой доход).
Описание слайда:
Примеры задач, решаемых с помощью регрессионных моделей Исследование зависимости заработной платы (Y) от возраста (X1), уровня образования (X2), пола (X3), стажа работы (X4) ( ) Прогноз и планирование выпускаемой продукции по факторам производства (производственная функция Кобба – Дугласа означает, что объем выпуска продукции (Y), является функцией количества капитала ( K ) и количества (L) труда ). Прогноз объемов потребления продукции или услуг определенного вида (кривая Энгеля где Y -удельная величина спроса, Х - среднедушевой доход).

Слайд 16





Регрессионные модели с переменной структурой (фиктивные переменные).
Построена регрессионная модель  зависимости заработной платы работника (Y) от возраста (Х)  с использованием фиктивной переменной по фактору  пол по 20 работникам одного предприятия 
Из полученного уравнения регрессии следует, что при одном и том же возрасте заработная плата у работников мужчин на 17,27$  в месяц выше, чем у женщин.
Из модели, включающей фиктивную переменную можно получить частные уравнения регрессии для работников мужчин (z=1) и женщин (z=0):
Описание слайда:
Регрессионные модели с переменной структурой (фиктивные переменные). Построена регрессионная модель зависимости заработной платы работника (Y) от возраста (Х) с использованием фиктивной переменной по фактору пол по 20 работникам одного предприятия Из полученного уравнения регрессии следует, что при одном и том же возрасте заработная плата у работников мужчин на 17,27$ в месяц выше, чем у женщин. Из модели, включающей фиктивную переменную можно получить частные уравнения регрессии для работников мужчин (z=1) и женщин (z=0):

Слайд 17


Корреляция. Парная регрессия, слайд №17
Описание слайда:

Слайд 18





       
       
      Администрация страховой компании приняла решение о введении нового вида услуг – страхование на случай пожара. С целью определения тарифов по выборке из 10 случаев пожаров анализируется зависимость стоимости ущерба, нанесенного пожаром от расстояния до ближайшей пожарной станции.
Описание слайда:
Администрация страховой компании приняла решение о введении нового вида услуг – страхование на случай пожара. С целью определения тарифов по выборке из 10 случаев пожаров анализируется зависимость стоимости ущерба, нанесенного пожаром от расстояния до ближайшей пожарной станции.

Слайд 19


Корреляция. Парная регрессия, слайд №19
Описание слайда:

Слайд 20





Прогноз по модели
Y=10,25+4,69X
Прогноз Х
	По исходным данным полагают, что расстояние до ближайшей пожарной станции  уменьшится на 5% от своего среднего уровня
Описание слайда:
Прогноз по модели Y=10,25+4,69X Прогноз Х По исходным данным полагают, что расстояние до ближайшей пожарной станции уменьшится на 5% от своего среднего уровня

Слайд 21





Построение доверительного интервала прогноза
Описание слайда:
Построение доверительного интервала прогноза

Слайд 22





Построение доверительного интервала прогноза
      Строим доверительный интервал прогноза ущерба с вероятностью 0,90  (t=1,86). Из полученных результатов видно, что интервал от 20,67 до 27,7 тыс. руб. ожидаемой величины ущерба довольно широкий. Значительная неопределенность прогноза линии регрессии, связана, прежде всего с малым объемом выборки (n=10), а также тем, что по мере удаления прогнозного знаения Х от среднего ширина доверительного интервала увеличивается.
Описание слайда:
Построение доверительного интервала прогноза Строим доверительный интервал прогноза ущерба с вероятностью 0,90 (t=1,86). Из полученных результатов видно, что интервал от 20,67 до 27,7 тыс. руб. ожидаемой величины ущерба довольно широкий. Значительная неопределенность прогноза линии регрессии, связана, прежде всего с малым объемом выборки (n=10), а также тем, что по мере удаления прогнозного знаения Х от среднего ширина доверительного интервала увеличивается.

Слайд 23





График прогноза
Описание слайда:
График прогноза



Похожие презентации
Mypresentation.ru
Загрузить презентацию