🗊Презентация Магия тел вращения

Категория: Алгебра
Нажмите для полного просмотра!
Магия тел вращения , слайд №1Магия тел вращения , слайд №2Магия тел вращения , слайд №3Магия тел вращения , слайд №4Магия тел вращения , слайд №5Магия тел вращения , слайд №6Магия тел вращения , слайд №7Магия тел вращения , слайд №8Магия тел вращения , слайд №9Магия тел вращения , слайд №10Магия тел вращения , слайд №11Магия тел вращения , слайд №12

Вы можете ознакомиться и скачать презентацию на тему Магия тел вращения . Доклад-сообщение содержит 12 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Магия тел вращения , слайд №1
Описание слайда:

Слайд 2


Магия тел вращения , слайд №2
Описание слайда:

Слайд 3






Задача 1.
Прямоугольный треугольник с гипотенузой 
25 см и проведенной к ней высотой равной 12 см
вращается вокруг гипотенузы. Найдите площадь
поверхности тела, полученного при вращении. 
Решение:
АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2) 	
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см 
Из ΔАНС по теореме Пифагора АС2=АН2+СН2;   
АС=20см-(образующая 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Sбок.кон(1)=πrl=π*12*20=240π (cм2);
Из ΔВНС  СВ2=СН2+НВ2                                      
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).        
Sтела=240π +180π=420π (см2)
Ответ: 420π см2
Описание слайда:
Задача 1. Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении. Решение: АВ=25 см, СН=12 см Sтела=Sбок.кон(1) + Sбок.кон(2) h2=ac*bc (высота в прямоугольном треугольнике) CH2=AH*HB. Пусть AH=x, тогда НВ=25-x. x(25-x)=122; x2-25x+144=0; АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2; АС=20см-(образующая 1) Sбок.кон(1)=πrl=π*12*20=240π (cм2); Из ΔВНС СВ2=СН2+НВ2 CB=15 (см).- (образующая 2). Sбок.кон(2)=π*12*15=180π (см2). Sтела=240π +180π=420π (см2) Ответ: 420π см2

Слайд 4





Задача 2.
Задача 2.

     Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается  вокруг большего основания. Найдите площадь поверхности тела вращения.
 Решение:
АС=5 см, НК=10см, СК=13 см.
  ОК=НК-АС=5 см;  
   l=13 см 
  Из ΔСОК по теореме Пифагора СО2=СК2-ОК2; СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
 
Ответ: 420π см2
Описание слайда:
Задача 2. Задача 2. Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения. Решение: АС=5 см, НК=10см, СК=13 см. ОК=НК-АС=5 см; l=13 см Из ΔСОК по теореме Пифагора СО2=СК2-ОК2; СО=r =12 см; Sбок.кон=πrl=π*12*13=156π (см2); Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2); Sтела= Sбок.кон.+Sцил.= 156π +264π= =420π (см2);   Ответ: 420π см2

Слайд 5





Задача 3.
Задача 3.
      Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается  вокруг меньшего  основания. Найдите площадь поверхности тела вращения. 

Решение:
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание) 
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);  
Из ΔАКВ - прямоугольного по теореме Пифагора КВ2=АВ2-АК2; 
КВ=12см – r
AB=l – образующая
 h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
Ответ: 540π см2
Описание слайда:
Задача 3. Задача 3. Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг меньшего основания. Найдите площадь поверхности тела вращения. Решение: ВС=5 см, АD=10 см,АВ=13 см Sтела= Sбок.кон.+Sцил(1основание) Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см); Из ΔАКВ - прямоугольного по теореме Пифагора КВ2=АВ2-АК2; КВ=12см – r AB=l – образующая h=AD=10 см Sтела=π*12*13 + 2π*12*10+144π=540π (см2). Ответ: 540π см2

Слайд 6





Задача 4.
Задача 4.
     Равнобокая трапеция с основаниями 4 см и 10 см и высотой 4 см вращали вокруг большего основания. Найдите площадь поверхности тела вращения. 
Решение:
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
 Sбок.кон=πrl
    HC=10-2/2=3.  
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
   CВ=5 см.-l (образующая).
BH=r=4 cм;    
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см.     Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
Ответ: 72π см2.
Описание слайда:
Задача 4. Задача 4. Равнобокая трапеция с основаниями 4 см и 10 см и высотой 4 см вращали вокруг большего основания. Найдите площадь поверхности тела вращения. Решение: АВ=4см, DC=10 см, ВН=4 см Sтела=2 Sбок.кон.+Sбок.цил. Sбок.кон=πrl HC=10-2/2=3. Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2; CВ=5 см.-l (образующая). BH=r=4 cм; Sбок.кон=π*4*5=20π (см2) h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2) Sтела=40π+32π=72π (см2). Ответ: 72π см2.

Слайд 7


Магия тел вращения , слайд №7
Описание слайда:

Слайд 8


Магия тел вращения , слайд №8
Описание слайда:

Слайд 9


Магия тел вращения , слайд №9
Описание слайда:

Слайд 10





  
  
 
   Дано два цилиндра. Объем первого равен 12 м3. Радиус
основания второго в два раза меньше, чем первого, а высота в три
раза больше. Требуется найти объем второго цилиндра.
Решение: Объем цилиндра вычисляется по формуле:V=hπr²
Отметим радиус основания первого цилиндра r а высоту h.
Тогда радиус основания второго цилиндра равен r/2, а
высота 3h. Подставим в указанную выше формулу и
получим:V₂=3hπ(r/2)² 
Упростим полученное выражение: V₂=3hπ(r/2)² =3/4hπr²=3/4·12=9
Таким образом, объем второго цилиндра равен 9 м3.
                                                                          
                                                                                           Ответ: 9.
Описание слайда:
        Дано два цилиндра. Объем первого равен 12 м3. Радиус основания второго в два раза меньше, чем первого, а высота в три раза больше. Требуется найти объем второго цилиндра. Решение: Объем цилиндра вычисляется по формуле:V=hπr² Отметим радиус основания первого цилиндра r а высоту h. Тогда радиус основания второго цилиндра равен r/2, а высота 3h. Подставим в указанную выше формулу и получим:V₂=3hπ(r/2)² Упростим полученное выражение: V₂=3hπ(r/2)² =3/4hπr²=3/4·12=9 Таким образом, объем второго цилиндра равен 9 м3. Ответ: 9.

Слайд 11


Магия тел вращения , слайд №11
Описание слайда:

Слайд 12


Магия тел вращения , слайд №12
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию