🗊Презентация Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1)

Категория: Математика
Нажмите для полного просмотра!
Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №1Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №2Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №3Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №4Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №5Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №6Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №7Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №8Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №9Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №10Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №11

Вы можете ознакомиться и скачать презентацию на тему Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1). Доклад-сообщение содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Тема: Математические основы экономической кибернетики. Элементы теории множеств и математической логики
Описание слайда:
Тема: Математические основы экономической кибернетики. Элементы теории множеств и математической логики

Слайд 2








На сегодня наиболее эффективный путь изучения экономических явлений и процессов связан с построением математических моделей. Это требует знания и умения применять не только традиционных разделов математики, но и тех, которые сформировались сравнительно недавно и относятся к дискретной математики.
Курс дискретной математики является фундаментом математической кибернетики и состоит из следующих основных частей:
1) теория чисел;
2) теория множеств;
3) математическая логика;
4) теория графов и сетей;
5) теория автоматов и формальных грамматик;
6) комбинаторный анализ.
Описание слайда:
На сегодня наиболее эффективный путь изучения экономических явлений и процессов связан с построением математических моделей. Это требует знания и умения применять не только традиционных разделов математики, но и тех, которые сформировались сравнительно недавно и относятся к дискретной математики. Курс дискретной математики является фундаментом математической кибернетики и состоит из следующих основных частей: 1) теория чисел; 2) теория множеств; 3) математическая логика; 4) теория графов и сетей; 5) теория автоматов и формальных грамматик; 6) комбинаторный анализ.

Слайд 3








Под множеством понимается некоторая определенная совокупность объектов  или элементов, которые имеют определенные свойства и находятся  в определенных отношениях между собой или элементами других множеств. 
Обозначают множества используя прописные латинские буквы (A,B,C,D,…S,N) или те же буквы только с индексами. А элементы множеств будем обозначать: a,b,c,d или a1,b1,c1,d1.
Пример: Множество десятичных цифр, множество студентов. 
Существует несколько способов задания множества:
Словесный (вербальный) с помощью описания характеристических свойств, которые обладают элементы этого множества. 
Список (перечень) всех элементов множества в фигурных скобках X= {0,1,2,3,4,5,6,7,8,9}, A={2,4,6,8,….}
Предикатный (высказывательный) множество задается в  виде: 
{x: P(x)}
P(x) – предикат (высказывание, которое получает значение «истина» для всех элементов данного множества. Например {x: x- студент ЗГИА}.
Описание слайда:
Под множеством понимается некоторая определенная совокупность объектов или элементов, которые имеют определенные свойства и находятся в определенных отношениях между собой или элементами других множеств. Обозначают множества используя прописные латинские буквы (A,B,C,D,…S,N) или те же буквы только с индексами. А элементы множеств будем обозначать: a,b,c,d или a1,b1,c1,d1. Пример: Множество десятичных цифр, множество студентов. Существует несколько способов задания множества: Словесный (вербальный) с помощью описания характеристических свойств, которые обладают элементы этого множества. Список (перечень) всех элементов множества в фигурных скобках X= {0,1,2,3,4,5,6,7,8,9}, A={2,4,6,8,….} Предикатный (высказывательный) множество задается в виде: {x: P(x)} P(x) – предикат (высказывание, которое получает значение «истина» для всех элементов данного множества. Например {x: x- студент ЗГИА}.

Слайд 4








Множества бывают:
конечными 
бесконечными (Например, множество всех точек прямой)
пустыми
Пустое множество обозначается символом       .
Например, множество решений уравнения     в области действительных чисел пусто, т.е.            .
Если объект a является элементом множества A, то пишут        , если же объект a не является элементом множества A, то пишут         .
Подмножество.
Рассмотрим множества A = {1, 2, 3, 4, 5, 6} и B = {2, 4, 6}. Каждый элемент множества B принадлежит множеству A.
Определение. Множество B называется подмножеством множества A, если каждый элемент множества B является элементом множества A, т.е.                     .
Обозначение.  B  A или A  B.
Описание слайда:
Множества бывают: конечными бесконечными (Например, множество всех точек прямой) пустыми Пустое множество обозначается символом . Например, множество решений уравнения в области действительных чисел пусто, т.е. . Если объект a является элементом множества A, то пишут , если же объект a не является элементом множества A, то пишут . Подмножество. Рассмотрим множества A = {1, 2, 3, 4, 5, 6} и B = {2, 4, 6}. Каждый элемент множества B принадлежит множеству A. Определение. Множество B называется подмножеством множества A, если каждый элемент множества B является элементом множества A, т.е. . Обозначение. B  A или A  B.

Слайд 5








Если в множестве B найдется хотя бы один элемент, не принадлежащий множеству A, то множество B не будет являться подмножеством множества A.
Обозначение.  B  A.
Множества А и В называются равными если они состоят из одних и тех же элементов. 
Обозначение. A=В.
Замечание:
1. Считают что пустое множество является подмножеством любого множества.
2. Любое множество является подмножеством самого себя. 
Универсальным множеством U называется множество обладающее такими свойствами, что все рассматриваемые множества являются его подмножествами.
Описание слайда:
Если в множестве B найдется хотя бы один элемент, не принадлежащий множеству A, то множество B не будет являться подмножеством множества A. Обозначение. B  A. Множества А и В называются равными если они состоят из одних и тех же элементов. Обозначение. A=В. Замечание: 1. Считают что пустое множество является подмножеством любого множества. 2. Любое множество является подмножеством самого себя. Универсальным множеством U называется множество обладающее такими свойствами, что все рассматриваемые множества являются его подмножествами.

Слайд 6





Часто в качестве инструмента позволяющего изображать множества и  иллюстрировать операции над ними используют диаграммы Венна (Эйлера). Множество представляется в виде внутренней части круга, а универсальное множество U обозначается прямоугольником.  
Часто в качестве инструмента позволяющего изображать множества и  иллюстрировать операции над ними используют диаграммы Венна (Эйлера). Множество представляется в виде внутренней части круга, а универсальное множество U обозначается прямоугольником.
Описание слайда:
Часто в качестве инструмента позволяющего изображать множества и иллюстрировать операции над ними используют диаграммы Венна (Эйлера). Множество представляется в виде внутренней части круга, а универсальное множество U обозначается прямоугольником. Часто в качестве инструмента позволяющего изображать множества и иллюстрировать операции над ними используют диаграммы Венна (Эйлера). Множество представляется в виде внутренней части круга, а универсальное множество U обозначается прямоугольником.

Слайд 7


Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №7
Описание слайда:

Слайд 8


Математические основы экономической кибернетики. Элементы теории множеств и математической логики. (Лекция 1), слайд №8
Описание слайда:

Слайд 9








5. Симметричная разность множеств А и В это множество тех элементов А, которые не принадлежат множеству В или множество элементов В не принадлежащих множеству А.
Описание слайда:
5. Симметричная разность множеств А и В это множество тех элементов А, которые не принадлежат множеству В или множество элементов В не принадлежащих множеству А.

Слайд 10








Операции над множествами обладают следующими свойствами:
Свойство коммутативности 
Свойство ассоциативности
Закон дистрибутивности
Закон идемпотентности
Описание слайда:
Операции над множествами обладают следующими свойствами: Свойство коммутативности Свойство ассоциативности Закон дистрибутивности Закон идемпотентности

Слайд 11








Операции над множествами обладают следующими свойствами:
5. Закон поглощения: 
6. Свойство инволюции:
7. Правило де Моргана:
8. Свойство пустого множества и универсального:
Описание слайда:
Операции над множествами обладают следующими свойствами: 5. Закон поглощения: 6. Свойство инволюции: 7. Правило де Моргана: 8. Свойство пустого множества и универсального:



Похожие презентации
Mypresentation.ru
Загрузить презентацию