Описание слайда:
Решение:
1. Существует целое четное число
Введем предикат P(x) – «x - четное», получим:
(∃ x∈ℤ)P(x). Читается «существует целое число x, которое четно». Истинно, так как среди целых чисел есть четные (2, 4, 6, …).
2. Все целые числа четные
(∀ x∈ℤ)P(x). Читается «любое целое число x - четное». Ложно, так как не все целые числа четные (1, 3, 5, …).
3. Найдется простое натуральное число
Введем предикат P(x) – «x - простое число», получим запись (∃ x∈ℕ)P(x). Читается «существует натуральное число x, которое делится только на себя и на единицу». Истинно, так как среди натуральных чисел найдутся простые (2, 3, 5, 7, 11, 13, …).
4. Любое натуральное число является простым
(∀ x∈ℕ)P(x). Читается «любое натуральное число - простое». Ложно, так как среди натуральных чисел есть такие, которые простыми не являются (4, 6, 9, …)
5. Множество всех простых чисел является подмножеством натуральных чисел.
Пусть существует множество М простых чисел m1, m2, … , mn, и множество ℕ натуральных чисел n1, n2, … , nn . Все элементы М также принадлежат множеству ℕ. Введем предикат P(x) – «x - натуральное». Получим равносильные записи:
(∀ m∈ℕ)P(x) и М⊆ℕ ⇔ℕ⊇М. Читается «каждое натуральное число m является натуральным. Множество М является подмножеством множества ℕ, равносильно высказыванию ℕ - надмножество множества М».