🗊 Математические имена Отчет по проекту

Категория: Алгебра
Нажмите для полного просмотра!
  
  Математические имена  Отчет по проекту  , слайд №1  
  Математические имена  Отчет по проекту  , слайд №2  
  Математические имена  Отчет по проекту  , слайд №3  
  Математические имена  Отчет по проекту  , слайд №4  
  Математические имена  Отчет по проекту  , слайд №5  
  Математические имена  Отчет по проекту  , слайд №6  
  Математические имена  Отчет по проекту  , слайд №7  
  Математические имена  Отчет по проекту  , слайд №8  
  Математические имена  Отчет по проекту  , слайд №9  
  Математические имена  Отчет по проекту  , слайд №10  
  Математические имена  Отчет по проекту  , слайд №11  
  Математические имена  Отчет по проекту  , слайд №12  
  Математические имена  Отчет по проекту  , слайд №13

Вы можете ознакомиться и скачать Математические имена Отчет по проекту . Презентация содержит 13 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Математические имена
Отчет по проекту
Описание слайда:
Математические имена Отчет по проекту

Слайд 2





Алфавитный указатель
А Б В
Г Д Е
Ж З К
Л М Н
О П Р
С Т
Описание слайда:
Алфавитный указатель А Б В Г Д Е Ж З К Л М Н О П Р С Т

Слайд 3





А Б В
Абель Нильс Хенрик (1802-1829), норвежский математик
      Абелевы интегралы.
(Математика.Справочник школьника, стр.3)
 Бернулли Иоганн (1667-1748), швейцарский математик
       Теорема Бернулли -одна из предельных теорем теории вероятностей; простейший случай закона больших чисел, относится к распределению отклонений частоты появления некоторого случайного события от его вероятности при независимых испытаниях. Установлена Я. Бернулли (опубликована в 1713).
(БЭ КиМ диск 1)
Виет Франсуа.
Теорема Виета гласит, что сумма корней  приведенного квадратного уравнения равна второму коэффициент, Взятому с противоположным знаком, а произведение корней равно свободному члену.
x 2 + p*x+q=0
x 1+x 2=-p
x 1*x 2=q
(Математика.Справочник школьника, стр.400)
Описание слайда:
А Б В Абель Нильс Хенрик (1802-1829), норвежский математик Абелевы интегралы. (Математика.Справочник школьника, стр.3) Бернулли Иоганн (1667-1748), швейцарский математик Теорема Бернулли -одна из предельных теорем теории вероятностей; простейший случай закона больших чисел, относится к распределению отклонений частоты появления некоторого случайного события от его вероятности при независимых испытаниях. Установлена Я. Бернулли (опубликована в 1713). (БЭ КиМ диск 1) Виет Франсуа. Теорема Виета гласит, что сумма корней приведенного квадратного уравнения равна второму коэффициент, Взятому с противоположным знаком, а произведение корней равно свободному члену. x 2 + p*x+q=0 x 1+x 2=-p x 1*x 2=q (Математика.Справочник школьника, стр.400)

Слайд 4





Г Д Е
Гаусс Карл Фридрих (1777-1855) немецкий математик Метод Гаусса  решения систем линейных уравнений.
Декарт Рене (1596-1650), французский ученый
Декартовы координаты. (Математика.Справочник школьника, стр.85)
   y
   0                       x


Евклид
Евклида алгоритм – это нахождение наибольшего общего делителя.
4824
48 1
0   , следовательно 24 наибольший общий делитель. Источник (Математика.Справочник школьника, стр.106)
Описание слайда:
Г Д Е Гаусс Карл Фридрих (1777-1855) немецкий математик Метод Гаусса решения систем линейных уравнений. Декарт Рене (1596-1650), французский ученый Декартовы координаты. (Математика.Справочник школьника, стр.85) y 0 x Евклид Евклида алгоритм – это нахождение наибольшего общего делителя. 4824 48 1 0 , следовательно 24 наибольший общий делитель. Источник (Математика.Справочник школьника, стр.106)

Слайд 5





Ж З К
Жергон Жозеф(1771-1859), французский математик
Точка Жергона – точка пересечения прямых, проходящих через вершины треугольника и точки  касания его сторон, противолежащих вершинам, с вписанной окружностью.
(Математика.Справочник школьника, стр.111)
Зейдель Филлип Людвиг (1821-1896), немецкий математик. 
Метод Зейделя – итерационный метод решения системы линейных уравнений
Клейн Феликс.
Интерпретация Клейна – отображения объектов плоскости Лобачевского в объекты евклидовой плоскости. (Математика.Справочник школьника, стр.151)
Описание слайда:
Ж З К Жергон Жозеф(1771-1859), французский математик Точка Жергона – точка пересечения прямых, проходящих через вершины треугольника и точки касания его сторон, противолежащих вершинам, с вписанной окружностью. (Математика.Справочник школьника, стр.111) Зейдель Филлип Людвиг (1821-1896), немецкий математик. Метод Зейделя – итерационный метод решения системы линейных уравнений Клейн Феликс. Интерпретация Клейна – отображения объектов плоскости Лобачевского в объекты евклидовой плоскости. (Математика.Справочник школьника, стр.151)

Слайд 6





Л М Н
Лобачевский Николай Иванович (1792-1856), великий русский математик
Доказал, что можно построить другую геометрию, отличную от геометрии Евклида. Такая геометрия называется геометрией  Лобачевского.
Мебиус Август Фердинанд.
Лист Мебиуса - поверхность, которая имеет только одну сторону. Чтобы наглядно представить себе эту поверхность, необходимо взять полоску бумаги и склеить ее концы, предварительно повернув один из них на 180 0 . (Источник - Математика. Справочник школьника, стр. 201.)

Ньютон Исаак (1643-1727), английский ученый
Бином Ньютона - это формула,  дающая выражения степени (a+b) n двучлен (a+b) с любым натуральным показателем n. Например:
при n=1, (a+b)= a+b,
при n=2, (a+b)= a 2 +2ab+ b 2. 
(Источник - Математика. Справочник школьника, стр. 21.)
Описание слайда:
Л М Н Лобачевский Николай Иванович (1792-1856), великий русский математик Доказал, что можно построить другую геометрию, отличную от геометрии Евклида. Такая геометрия называется геометрией Лобачевского. Мебиус Август Фердинанд. Лист Мебиуса - поверхность, которая имеет только одну сторону. Чтобы наглядно представить себе эту поверхность, необходимо взять полоску бумаги и склеить ее концы, предварительно повернув один из них на 180 0 . (Источник - Математика. Справочник школьника, стр. 201.) Ньютон Исаак (1643-1727), английский ученый Бином Ньютона - это формула, дающая выражения степени (a+b) n двучлен (a+b) с любым натуральным показателем n. Например: при n=1, (a+b)= a+b, при n=2, (a+b)= a 2 +2ab+ b 2. (Источник - Математика. Справочник школьника, стр. 21.)

Слайд 7





О П Р
Остроградский Михаил Васильевич (1801-1861), Выдающийся русский математик.
	Способ Остроградского интегрирования рациональных функций.
Ист.Выгодский. Справочник по высшей математике.М. «Наука», 1966,  стр 432
Описание слайда:
О П Р Остроградский Михаил Васильевич (1801-1861), Выдающийся русский математик. Способ Остроградского интегрирования рациональных функций. Ист.Выгодский. Справочник по высшей математике.М. «Наука», 1966, стр 432

Слайд 8





С Т
Симпсон Роберт( 1687-1768), шотландский математик
Теорема Симпсона: ортогональные проекции произвольной точки окружности, описанной около треугольника на его стороны лежат на одной прямой, это прямая называется “прямой Симпсона”.
(Источник - Математика. Справочник школьника, стр. 361.)
Тейлор Брук (1685-1731), английский математик.
Тейлора метод - метод, который позволяет разложить заданную функцию в степенный ряд. Формула, задающая это разложение, называется формулой Тейлора,  а этот степенный ряд - рядом Тейлора.
(Источник - Математика. Справочник школьника, стр. 399.)
Описание слайда:
С Т Симпсон Роберт( 1687-1768), шотландский математик Теорема Симпсона: ортогональные проекции произвольной точки окружности, описанной около треугольника на его стороны лежат на одной прямой, это прямая называется “прямой Симпсона”. (Источник - Математика. Справочник школьника, стр. 361.) Тейлор Брук (1685-1731), английский математик. Тейлора метод - метод, который позволяет разложить заданную функцию в степенный ряд. Формула, задающая это разложение, называется формулой Тейлора, а этот степенный ряд - рядом Тейлора. (Источник - Математика. Справочник школьника, стр. 399.)

Слайд 9





У Ф
Уайтхед Альфред Норт( 1861-1947), англо-вмериканский математик, логик, философ.          Метод Уайтхеда –метод экстенсивной абстракции, служит для определения идеальной сущности.
Источник:www.krugosvet.ru
Фалес Милетский.(624 –548 гг.до н.э.), древнегреческий математик и астроном.
Теорема Фалеса: если параллельные прямые, пересекающие стороны угла, отсекают на другой его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне 
(Источник - Математика. Справочник школьника, стр. 403.)
Описание слайда:
У Ф Уайтхед Альфред Норт( 1861-1947), англо-вмериканский математик, логик, философ. Метод Уайтхеда –метод экстенсивной абстракции, служит для определения идеальной сущности. Источник:www.krugosvet.ru Фалес Милетский.(624 –548 гг.до н.э.), древнегреческий математик и астроном. Теорема Фалеса: если параллельные прямые, пересекающие стороны угла, отсекают на другой его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (Источник - Математика. Справочник школьника, стр. 403.)

Слайд 10





Х Ц
Хевисайд Оливер(1850-1923), англ.физик и математик
Функция Хевисайда





Ист. С.М.Никольский Курс Математического анализа. Стр 238
Цермело Эрнест(1871-1953), немецкий математик
Теорема Цермело (логика предикатов) «Всякое множество может быть вполне упорядочено некоторым отношением порядка»
Ист. Новиков.Элементы Математической логики.
Описание слайда:
Х Ц Хевисайд Оливер(1850-1923), англ.физик и математик Функция Хевисайда Ист. С.М.Никольский Курс Математического анализа. Стр 238 Цермело Эрнест(1871-1953), немецкий математик Теорема Цермело (логика предикатов) «Всякое множество может быть вполне упорядочено некоторым отношением порядка» Ист. Новиков.Элементы Математической логики.

Слайд 11





Ч
Чебышев Пафнутий Львович (1821-1894), русский математик
Многочлен Чебышева – связь алгебраических многочленов и тригонометрических полиномов
QN(x)=cosn arccosx = 0n x+ 1n x+…+ Nn x
Источник: Никольский Курс математического анализа М., «Наука»,с.216
Чева Джованни (1648-1734), итальянский геометр.
Теорема Чевы: если прямые, соединяющие вершины треугольника АВС с точкой К, лежащие в плоскости треугольника, пересекают противоположные стороны или продолжения в точках А1 , B1 , C1 ,  то справедливо равенство (AC/ C1B)*(B А1 / А1C)*(C B1 / B1 A )=1
Источник: Математика.Справочник школьника, стр.498
Описание слайда:
Ч Чебышев Пафнутий Львович (1821-1894), русский математик Многочлен Чебышева – связь алгебраических многочленов и тригонометрических полиномов QN(x)=cosn arccosx = 0n x+ 1n x+…+ Nn x Источник: Никольский Курс математического анализа М., «Наука»,с.216 Чева Джованни (1648-1734), итальянский геометр. Теорема Чевы: если прямые, соединяющие вершины треугольника АВС с точкой К, лежащие в плоскости треугольника, пересекают противоположные стороны или продолжения в точках А1 , B1 , C1 , то справедливо равенство (AC/ C1B)*(B А1 / А1C)*(C B1 / B1 A )=1 Источник: Математика.Справочник школьника, стр.498

Слайд 12





Ш Э
Шаль Мишель (1793 –1880), французский математик.
Лемма Шаля: для любых трех точек 
A, B, C  числовой прямой имеет
 место равенство векторов: AB+BC=AC.
(Источник - Математика. Справочник школьника, стр. 516.)
Эйлер Леонард(1707-1783), шведский математик.
Круги Эйлера.

(Источник - Математика. Справочник школьника, стр. 526.)
Описание слайда:
Ш Э Шаль Мишель (1793 –1880), французский математик. Лемма Шаля: для любых трех точек A, B, C числовой прямой имеет место равенство векторов: AB+BC=AC. (Источник - Математика. Справочник школьника, стр. 516.) Эйлер Леонард(1707-1783), шведский математик. Круги Эйлера. (Источник - Математика. Справочник школьника, стр. 526.)

Слайд 13





Ю Я
Юнис Ибн.
Составил знаменитые астрономические 
таблицы,  вычислил sin 10 ,
 с точностью до 0, 0000001. 
(Источник - Математика. Справочник школьника, стр. 533.)
Якоби Карл Густав.
Многочлены Якоби, определитель Якоби - Якобиан. (Источник - Математика. Справочник школьника, стр. 534.)
Описание слайда:
Ю Я Юнис Ибн. Составил знаменитые астрономические таблицы, вычислил sin 10 , с точностью до 0, 0000001. (Источник - Математика. Справочник школьника, стр. 533.) Якоби Карл Густав. Многочлены Якоби, определитель Якоби - Якобиан. (Источник - Математика. Справочник школьника, стр. 534.)



Похожие презентации
Mypresentation.ru
Загрузить презентацию