🗊Презентация Множеества и операции над ними

Категория: Математика
Нажмите для полного просмотра!
Множеества и операции над ними, слайд №1Множеества и операции над ними, слайд №2Множеества и операции над ними, слайд №3Множеества и операции над ними, слайд №4Множеества и операции над ними, слайд №5Множеества и операции над ними, слайд №6Множеества и операции над ними, слайд №7Множеества и операции над ними, слайд №8Множеества и операции над ними, слайд №9Множеества и операции над ними, слайд №10Множеества и операции над ними, слайд №11Множеества и операции над ними, слайд №12Множеества и операции над ними, слайд №13Множеества и операции над ними, слайд №14Множеества и операции над ними, слайд №15Множеества и операции над ними, слайд №16Множеества и операции над ними, слайд №17Множеества и операции над ними, слайд №18Множеества и операции над ними, слайд №19Множеества и операции над ними, слайд №20Множеества и операции над ними, слайд №21Множеества и операции над ними, слайд №22Множеества и операции над ними, слайд №23

Содержание

Вы можете ознакомиться и скачать презентацию на тему Множеества и операции над ними. Доклад-сообщение содержит 23 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Множества и операции 
над ними
Описание слайда:
Множества и операции над ними

Слайд 2






В математике часто приходится рассматривать те или иные группы объектов как единое.
Все эти различные совокупности называют множествами.
Описание слайда:
В математике часто приходится рассматривать те или иные группы объектов как единое. Все эти различные совокупности называют множествами.

Слайд 3






Обозначают: А,В,С…, пустое-_____
Объекты, из которых состоит множество, называют его элементами.
В математике мы рассматриваем принадлежность объектов к рассматриваемому множеству: принадлежит или не принадлежит множеству.
________________________
Множества бывают конечными и бесконечными.
Описание слайда:
Обозначают: А,В,С…, пустое-_____ Объекты, из которых состоит множество, называют его элементами. В математике мы рассматриваем принадлежность объектов к рассматриваемому множеству: принадлежит или не принадлежит множеству. ________________________ Множества бывают конечными и бесконечными.

Слайд 4










Множество определяется своими элементами, 
т.е. множество задано, если о любом объекте можно сказать, принадлежит он этому множеству либо не принадлежит.




Способы задания множеств:
перечисление элементов множества
указание характеристического свойства
Описание слайда:
Множество определяется своими элементами, т.е. множество задано, если о любом объекте можно сказать, принадлежит он этому множеству либо не принадлежит. Способы задания множеств: перечисление элементов множества указание характеристического свойства

Слайд 5





Отношения между множествами:
Множества, имеющие общие элементы, пересекаются
Элементы одного множества В являются элементами другого множества А. Говорят множество В является подмножеством множества А.
Множества равны, если множество А –подмножество В, В подмножество А
Непересекающиеся множества.
Описание слайда:
Отношения между множествами: Множества, имеющие общие элементы, пересекаются Элементы одного множества В являются элементами другого множества А. Говорят множество В является подмножеством множества А. Множества равны, если множество А –подмножество В, В подмножество А Непересекающиеся множества.

Слайд 6





Задания:
при помощи кругов Эйлера изобразите отношения между объектами:
А - множество треугольников, В- множество прямоугольных треугольников
А – прямые, В – отрезки
А – однозначные числа, В – двузначные числа, С -  натуральные числа.
Описание слайда:
Задания: при помощи кругов Эйлера изобразите отношения между объектами: А - множество треугольников, В- множество прямоугольных треугольников А – прямые, В – отрезки А – однозначные числа, В – двузначные числа, С - натуральные числа.

Слайд 7





Операции над множествами:
Из элементов двух и более множеств можно образовать новые множества.
Пусть даны два множества: А=2,4,6,8; В=5,6,7,8,9. Образуем множество С, в которое включим общие элементы множеств А и В. Полученное множество называют пересечением множеств А и В.
Описание слайда:
Операции над множествами: Из элементов двух и более множеств можно образовать новые множества. Пусть даны два множества: А=2,4,6,8; В=5,6,7,8,9. Образуем множество С, в которое включим общие элементы множеств А и В. Полученное множество называют пересечением множеств А и В.

Слайд 8





Операции над множествами:
Пересечением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А и множеству В.
Описание слайда:
Операции над множествами: Пересечением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А и множеству В.

Слайд 9





Операции над множествами
Что значит 2+3? 
К двум кружочкам добавить еще 3. 
Мы выполнили операцию объединения двух множеств, не имеющих общих элементов.
Описание слайда:
Операции над множествами Что значит 2+3? К двум кружочкам добавить еще 3. Мы выполнили операцию объединения двух множеств, не имеющих общих элементов.

Слайд 10





Операции над множествами
Объединением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А или множеству В.
Описание слайда:
Операции над множествами Объединением множеств А и В называется множество, содержащее только такие элементы, которые принадлежат множеству А или множеству В.

Слайд 11





Задания:
Найдите объединение и пересечение множеств, если:
А)     А =26, 39, 5, 58, 17, 81,   В= 17, 26, 58
Б)     А=a, b, c, d, e, f,                  B= b, e, f, k, l
Назовите все множества, о которых идет речь в задаче:
- У школы посадили 4 липы и 3 березы. Сколько всего деревьев посадили?
- На каждой тарелке 5 яблок. Сколько яблок на 3 тарелках?
Описание слайда:
Задания: Найдите объединение и пересечение множеств, если: А) А =26, 39, 5, 58, 17, 81, В= 17, 26, 58 Б) А=a, b, c, d, e, f, B= b, e, f, k, l Назовите все множества, о которых идет речь в задаче: - У школы посадили 4 липы и 3 березы. Сколько всего деревьев посадили? - На каждой тарелке 5 яблок. Сколько яблок на 3 тарелках?

Слайд 12





Операции над множествами
Что значит 5-3=2? 
От 5 кружков убираем 3 кружка. Сколько осталось?   В чем суть приема? 
(Из данного множества, в котором а элементов, удаляют подмножество, содержащее b элементов. Тогда в оставшейся части множества a-b элементов.)
Та часть, которая осталась после удаления из множества А подмножества В называют дополнением множества В до множества А.
Описание слайда:
Операции над множествами Что значит 5-3=2? От 5 кружков убираем 3 кружка. Сколько осталось? В чем суть приема? (Из данного множества, в котором а элементов, удаляют подмножество, содержащее b элементов. Тогда в оставшейся части множества a-b элементов.) Та часть, которая осталась после удаления из множества А подмножества В называют дополнением множества В до множества А.

Слайд 13





Операции над множествами
Пусть В является подмножеством А. Дополнением множества В до множества А называется множество, содержащее только те элементы множества А, которые не принадлежат множеству В.
Описание слайда:
Операции над множествами Пусть В является подмножеством А. Дополнением множества В до множества А называется множество, содержащее только те элементы множества А, которые не принадлежат множеству В.

Слайд 14





Задания:

Найдите дополнение множества С до множества Д, если: С=41,42,   Д=40,41,42,43,44
У Коли 10 значков, он подарил товарищу 2 значка. Сколько значков осталось у Коли?
У Винни-Пуха 6 воздушных шаров, а у Пяточка на 2 шара меньше. Сколько воздушных шаров у Пяточка?
Описание слайда:
Задания: Найдите дополнение множества С до множества Д, если: С=41,42, Д=40,41,42,43,44 У Коли 10 значков, он подарил товарищу 2 значка. Сколько значков осталось у Коли? У Винни-Пуха 6 воздушных шаров, а у Пяточка на 2 шара меньше. Сколько воздушных шаров у Пяточка?

Слайд 15





Разбиение множества на классы
Классификация – это действие распределения объектов по классам на основании сходства объектов внутри класса и их отличия от объектов других классов.
Любая классификация связана с расчленением некоторого множества объектов на подмножества.
Считают, что множество Х разбито на классы Х1, Х2, Х3 …, если:
1) Подмножества Х1,Х2, Х3… попарно не пересекаются
2) Объединение подмножеств Х1, Х2, Х3 … совпадает с множеством Х.
Описание слайда:
Разбиение множества на классы Классификация – это действие распределения объектов по классам на основании сходства объектов внутри класса и их отличия от объектов других классов. Любая классификация связана с расчленением некоторого множества объектов на подмножества. Считают, что множество Х разбито на классы Х1, Х2, Х3 …, если: 1) Подмножества Х1,Х2, Х3… попарно не пересекаются 2) Объединение подмножеств Х1, Х2, Х3 … совпадает с множеством Х.

Слайд 16





Можно ли:
множество Х треугольников разбить на три класса: остроугольные, прямоугольные, тупоугольные.
множество Х треугольников разбить на три класса: равнобедренные, равносторонние, разносторонние
Описание слайда:
Можно ли: множество Х треугольников разбить на три класса: остроугольные, прямоугольные, тупоугольные. множество Х треугольников разбить на три класса: равнобедренные, равносторонние, разносторонние

Слайд 17





Задание:

Покажите, что решение задачи связано с разбиением заданного множества на попарно непересекающиеся подмножества:
1) 12 флажков разделили ребятам, по 2 флажка каждому. Сколько ребят получили флажки?
2) Для игры в волейбол 12 ребят разбились на 2 команды. Сколько ребят в каждой команде?
Описание слайда:
Задание: Покажите, что решение задачи связано с разбиением заданного множества на попарно непересекающиеся подмножества: 1) 12 флажков разделили ребятам, по 2 флажка каждому. Сколько ребят получили флажки? 2) Для игры в волейбол 12 ребят разбились на 2 команды. Сколько ребят в каждой команде?

Слайд 18





Задание:
Используя цифры 1, 2, 3 составить все возможные двузначные числа.
Описание слайда:
Задание: Используя цифры 1, 2, 3 составить все возможные двузначные числа.

Слайд 19





Декартово умножение множеств
В процессе выполнения задания мы образовали новое множество, элементами которого являются упорядоченные пары чисел. Это новое множество называют декартовым произведением множеств А и В
Описание слайда:
Декартово умножение множеств В процессе выполнения задания мы образовали новое множество, элементами которого являются упорядоченные пары чисел. Это новое множество называют декартовым произведением множеств А и В

Слайд 20





Декартово умножение множеств
Декартовым произведением множеств А и В называется множество пар, первая компонента которых принадлежит множеству А, а вторая компонента множеству В.
Операцию, при помощи которой находят декартово произведение, называют декартовым умножением множеств.
Описание слайда:
Декартово умножение множеств Декартовым произведением множеств А и В называется множество пар, первая компонента которых принадлежит множеству А, а вторая компонента множеству В. Операцию, при помощи которой находят декартово произведение, называют декартовым умножением множеств.

Слайд 21






Получая различные декартовы произведения, мы должны следить, чтобы получить все его элементы, не пропуская ни одного. 
В математике определена теорема: 
Если множество А содержит m элементов, а множество В - n элементов, то декартово произведение АхВ содержит m*n элементов.
Описание слайда:
Получая различные декартовы произведения, мы должны следить, чтобы получить все его элементы, не пропуская ни одного. В математике определена теорема: Если множество А содержит m элементов, а множество В - n элементов, то декартово произведение АхВ содержит m*n элементов.

Слайд 22





Задание: 

сколько элементов в декартовом произведении АхА, если А=а,b, c, d, e.
используя цифры 4,2,8, запишите все возможные двузначные числа так, чтобы одна и та же цифра в записи числа не повторялась.
Описание слайда:
Задание: сколько элементов в декартовом произведении АхА, если А=а,b, c, d, e. используя цифры 4,2,8, запишите все возможные двузначные числа так, чтобы одна и та же цифра в записи числа не повторялась.

Слайд 23






Комбинаторные задачи – это задачи, связанные с составлением из элементов конечных множеств по некоторым правилам различных комбинаций.
Описание слайда:
Комбинаторные задачи – это задачи, связанные с составлением из элементов конечных множеств по некоторым правилам различных комбинаций.



Похожие презентации
Mypresentation.ru
Загрузить презентацию