🗊Ньютон и Лейбниц – создатели математического анализа

Категория: Математика
Нажмите для полного просмотра!
Ньютон и Лейбниц – создатели математического анализа, слайд №1Ньютон и Лейбниц – создатели математического анализа, слайд №2Ньютон и Лейбниц – создатели математического анализа, слайд №3Ньютон и Лейбниц – создатели математического анализа, слайд №4Ньютон и Лейбниц – создатели математического анализа, слайд №5Ньютон и Лейбниц – создатели математического анализа, слайд №6Ньютон и Лейбниц – создатели математического анализа, слайд №7Ньютон и Лейбниц – создатели математического анализа, слайд №8Ньютон и Лейбниц – создатели математического анализа, слайд №9Ньютон и Лейбниц – создатели математического анализа, слайд №10Ньютон и Лейбниц – создатели математического анализа, слайд №11Ньютон и Лейбниц – создатели математического анализа, слайд №12Ньютон и Лейбниц – создатели математического анализа, слайд №13Ньютон и Лейбниц – создатели математического анализа, слайд №14Ньютон и Лейбниц – создатели математического анализа, слайд №15Ньютон и Лейбниц – создатели математического анализа, слайд №16Ньютон и Лейбниц – создатели математического анализа, слайд №17Ньютон и Лейбниц – создатели математического анализа, слайд №18Ньютон и Лейбниц – создатели математического анализа, слайд №19Ньютон и Лейбниц – создатели математического анализа, слайд №20Ньютон и Лейбниц – создатели математического анализа, слайд №21Ньютон и Лейбниц – создатели математического анализа, слайд №22Ньютон и Лейбниц – создатели математического анализа, слайд №23Ньютон и Лейбниц – создатели математического анализа, слайд №24Ньютон и Лейбниц – создатели математического анализа, слайд №25

Вы можете ознакомиться и скачать Ньютон и Лейбниц – создатели математического анализа. Презентация содержит 25 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Ньютон и Лейбниц – создатели математического анализа
Описание слайда:
Ньютон и Лейбниц – создатели математического анализа

Слайд 2





Производная и интеграл
В конце 17 века в Европе образовались две крупные математические школы. Главой одной из них был Готфрид Вильгельм фон Лейбниц. Его ученики и сотрудники – Лопиталь, братья Бернулли, Эйлер жили и творили на континенте. Вторая школа, возглавляемая Исааком Ньютоном, состояла из английских и шотландских ученых. Обе школы создали новые мощные алгоритмы, приведшие по сути к одним и тем же результатам – к созданию дифференциального и интегрального исчисления.
Описание слайда:
Производная и интеграл В конце 17 века в Европе образовались две крупные математические школы. Главой одной из них был Готфрид Вильгельм фон Лейбниц. Его ученики и сотрудники – Лопиталь, братья Бернулли, Эйлер жили и творили на континенте. Вторая школа, возглавляемая Исааком Ньютоном, состояла из английских и шотландских ученых. Обе школы создали новые мощные алгоритмы, приведшие по сути к одним и тем же результатам – к созданию дифференциального и интегрального исчисления.

Слайд 3





Происхождение производной
Ряд задач дифференциального исчисления был решен еще в древности. Такие задачи можно найти у Евклида и у Архимеда, однако основное понятие – понятие производной функции – возникло только в17 веке в связи с необходимостью решить ряд задач из физики, механики и математики, в первую очередь следующих двух: определение скорости прямолинейного неравномерного движения и построения касательной к произвольной плоской кривой.
Первую задачу: о связи скорости и пути прямолинейно и неравномерно движущейся точки впервые решил Ньютон
     
     

   Он пришел к формуле
Описание слайда:
Происхождение производной Ряд задач дифференциального исчисления был решен еще в древности. Такие задачи можно найти у Евклида и у Архимеда, однако основное понятие – понятие производной функции – возникло только в17 веке в связи с необходимостью решить ряд задач из физики, механики и математики, в первую очередь следующих двух: определение скорости прямолинейного неравномерного движения и построения касательной к произвольной плоской кривой. Первую задачу: о связи скорости и пути прямолинейно и неравномерно движущейся точки впервые решил Ньютон Он пришел к формуле

Слайд 4





Происхождение производной
Ньютон пришел к понятию производной, исходя из вопросов механики. Свои результаты в этой области он изложил в трактате «Метод флюксий и бесконечных рядов». Написана работа была в 60-е годы 17 века, однако опубликована после смерти Ньютона. Ньютон не заботился о том, чтобы своевременно знакомить математическую общественность со своими работами. 
Флюксией называлась производная функции – флюэнты.
Флюэнтой таже в дальнейшем называлась первообразная функция.
Описание слайда:
Происхождение производной Ньютон пришел к понятию производной, исходя из вопросов механики. Свои результаты в этой области он изложил в трактате «Метод флюксий и бесконечных рядов». Написана работа была в 60-е годы 17 века, однако опубликована после смерти Ньютона. Ньютон не заботился о том, чтобы своевременно знакомить математическую общественность со своими работами. Флюксией называлась производная функции – флюэнты. Флюэнтой таже в дальнейшем называлась первообразная функция.

Слайд 5


Ньютон и Лейбниц – создатели математического анализа, слайд №5
Описание слайда:

Слайд 6


Ньютон и Лейбниц – создатели математического анализа, слайд №6
Описание слайда:

Слайд 7


Ньютон и Лейбниц – создатели математического анализа, слайд №7
Описание слайда:

Слайд 8


Ньютон и Лейбниц – создатели математического анализа, слайд №8
Описание слайда:

Слайд 9





Бином Ньютона
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
Описание слайда:
Бином Ньютона Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

Слайд 10





Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке.
Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке.
Исаак Ньютон около 1676 года обобщил формулу для произвольного показателя степени (дробного, отрицательного и др.). Из биномиального разложения Ньютон, а позднее и Эйлер, выводили всю теорию бесконечных рядов.
Описание слайда:
Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке. Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль. Однако историки науки обнаружили, что формула была известна ещё в Древнем Китае в XIII веке, а также исламским математикам в XV веке. Исаак Ньютон около 1676 года обобщил формулу для произвольного показателя степени (дробного, отрицательного и др.). Из биномиального разложения Ньютон, а позднее и Эйлер, выводили всю теорию бесконечных рядов.

Слайд 11





    Бином Ньютона в литературе
В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном. 
В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти:
«Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая будущность»
Знаменита цитата из «Мастера и Маргариты» М. А. Булгакова: «Подумаешь, бином Ньютона!». 
Позже это же выражение упомянуто в фильме «Сталкер» А. А. Тарковского.
             Бином Ньютона упоминается: 
в повести Льва Толстого «Юность» в эпизоде сдачи вступительных экзаменов в университет Николаем Иртеньевым;
в романе Е.И.Замятина «Мы».
в фильме «Расписание на послезавтра»;
Описание слайда:
Бином Ньютона в литературе В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном. В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти: «Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая будущность» Знаменита цитата из «Мастера и Маргариты» М. А. Булгакова: «Подумаешь, бином Ньютона!». Позже это же выражение упомянуто в фильме «Сталкер» А. А. Тарковского. Бином Ньютона упоминается: в повести Льва Толстого «Юность» в эпизоде сдачи вступительных экзаменов в университет Николаем Иртеньевым; в романе Е.И.Замятина «Мы». в фильме «Расписание на послезавтра»;

Слайд 12





   Происхождение производной
В подходе Лейбница к математическому анализу были некоторые особенности. Лейбниц мыслил высший анализ не кинематически, как Ньютон, а алгебраически. Он шел к своему открытию от анализа бесконечно малых величин и теории бесконечных рядов.
В 1675 году Лейбниц завершает свой вариант математического анализа, тщательно продумывает его символику и терминологию, отражающую существо дела. Почти все его нововведения укоренились в науке и только термин «интеграл» ввёл Якоб Бернулли (1690), сам Лейбниц вначале называл его просто суммой.
Описание слайда:
Происхождение производной В подходе Лейбница к математическому анализу были некоторые особенности. Лейбниц мыслил высший анализ не кинематически, как Ньютон, а алгебраически. Он шел к своему открытию от анализа бесконечно малых величин и теории бесконечных рядов. В 1675 году Лейбниц завершает свой вариант математического анализа, тщательно продумывает его символику и терминологию, отражающую существо дела. Почти все его нововведения укоренились в науке и только термин «интеграл» ввёл Якоб Бернулли (1690), сам Лейбниц вначале называл его просто суммой.

Слайд 13





   Происхождение производной
По мере развития анализа выяснилось, что символика Лейбница, в отличие от ньютоновской, отлично подходит для обозначения многократного дифференцирования, частных производных и т. д. На пользу школе Лейбница шла и его открытость, массовая популяризация новых идей, что Ньютон делал крайне неохотно.
Описание слайда:
Происхождение производной По мере развития анализа выяснилось, что символика Лейбница, в отличие от ньютоновской, отлично подходит для обозначения многократного дифференцирования, частных производных и т. д. На пользу школе Лейбница шла и его открытость, массовая популяризация новых идей, что Ньютон делал крайне неохотно.

Слайд 14


Ньютон и Лейбниц – создатели математического анализа, слайд №14
Описание слайда:

Слайд 15





Кто автор производной?
Ньютон  создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики. Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать. что он был выработан Ньютоном между 1666 и 1669 годами.
Лейбниц обнародовав главные результаты своего открытия в 1684, опережая Исаака Ньютона, который еще раньше Лейбница пришел к сходным результатам, но не публиковал их.
 Впоследствии на эту тему возник многолетний спор о приоритете открытия дифференциального исчисления.
Описание слайда:
Кто автор производной? Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики. Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать. что он был выработан Ньютоном между 1666 и 1669 годами. Лейбниц обнародовав главные результаты своего открытия в 1684, опережая Исаака Ньютона, который еще раньше Лейбница пришел к сходным результатам, но не публиковал их. Впоследствии на эту тему возник многолетний спор о приоритете открытия дифференциального исчисления.

Слайд 16





Формула Ньютона-Лейбница
Описание слайда:
Формула Ньютона-Лейбница

Слайд 17


Ньютон и Лейбниц – создатели математического анализа, слайд №17
Описание слайда:

Слайд 18


Ньютон и Лейбниц – создатели математического анализа, слайд №18
Описание слайда:

Слайд 19


Ньютон и Лейбниц – создатели математического анализа, слайд №19
Описание слайда:

Слайд 20


Ньютон и Лейбниц – создатели математического анализа, слайд №20
Описание слайда:

Слайд 21


Ньютон и Лейбниц – создатели математического анализа, слайд №21
Описание слайда:

Слайд 22


Ньютон и Лейбниц – создатели математического анализа, слайд №22
Описание слайда:

Слайд 23





Использованные ресурсы:
Описание слайда:
Использованные ресурсы:

Слайд 24





Использованные ресурсы:
http://www.alib.ru/bs.php4?uid=1129dbb67b5eacfb00831c58dd512a88c759
http://www.dom-knigi.ru/book.asp?Art=316871&CatalogID=158
http://www.athens.kiev.ua/lejbnic/
http://www.100book.ru/predel_funkcij_formuly_nyutona-lejbnica_i_tejlora_b382187.html 
http://tvsh2004.narod.ru/ma_12-0.htm
Мордкович А.П. П.В.Алгебра и начала анализа (профильный уровень) 
10 класс, М., «Мнемозина», 2006.
Описание слайда:
Использованные ресурсы: http://www.alib.ru/bs.php4?uid=1129dbb67b5eacfb00831c58dd512a88c759 http://www.dom-knigi.ru/book.asp?Art=316871&CatalogID=158 http://www.athens.kiev.ua/lejbnic/ http://www.100book.ru/predel_funkcij_formuly_nyutona-lejbnica_i_tejlora_b382187.html http://tvsh2004.narod.ru/ma_12-0.htm Мордкович А.П. П.В.Алгебра и начала анализа (профильный уровень) 10 класс, М., «Мнемозина», 2006.

Слайд 25


Ньютон и Лейбниц – создатели математического анализа, слайд №25
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию