Описание слайда:
1.16. Формула Байеса (теорема гипотез)
Пусть событие А может произойти только при появлении одного из несовместных событий (гипотез) H1, H2,...Hn. Предполагается, что известны априорные вероятности гипотез Р(H1), Р(H2),...,Р(Hn) и условные вероятности Р(А/Hi), i= 1,2,…,n, события А при каждой из гипотез. Допустим, что произведено испытание, в результате которого появилось событие А. Необходимо определить, с какой из гипотез следует связывать появление события А, т.е. определить, следствием какой гипотезы явилось это событие. Иначе говоря, требуется определить обратные вероятности гипотез Р(H1/A), Р(H2/A),…, Р(Hn/A) при условии, что событие A произошло. Если событие А произошло, то это, очевидно, должно вызвать переоценку вероятностей гипотез Hi, i= 1,2,…,n. Количественную оценку изменения вероятностей гипотез дает формула Байеса.
Вероятность гипотезы Р(Hi/A) равна отношению вероятности Р(HiA) совместного появления событий Hi и А к полной вероятности Р(А) события А:
(1.16.1)
Правая часть выражения (1) состоит из двух сомножителей: априорной вероятности P(Hi), характеризующей неопределенность гипотезы Hi до опыта и коэффициента
,
уточняющего априорную вероятность на основе эксперимента. Апостериорная вероятность P(Hi/А) гипотезы Hi характеризует пересмотренное значение априорной вероятности P(Hi) после получения дополнительной информации о появлении события А. Вероятность P(А/Hi) события А (наблюдения, сообщения и т.п.) в предположении, что верна гипотеза Hi иногда называют правдоподобием гипотезы Hi.