🗊Презентация Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи

Категория: Математика
Нажмите для полного просмотра!
Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №1Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №2Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №3Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №4Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №5Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №6Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №7Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №8Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №9Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №10Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №11Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №12Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №13Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №14Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №15Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №16Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №17Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №18Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №19Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №20Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №21Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №22Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №23Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №24Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №25Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №26Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №27Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №28Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №29Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №30Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №31Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №32Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №33

Содержание

Вы можете ознакомиться и скачать презентацию на тему Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи. Доклад-сообщение содержит 33 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Подготовка к ЕГЭ по математике	
Базовый уровень
Сложные задачи
Описание слайда:
Подготовка к ЕГЭ по математике Базовый уровень Сложные задачи

Слайд 2


Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №2
Описание слайда:

Слайд 3


Подготовка к ЕГЭ по математике. Базовый уровень Сложные задачи, слайд №3
Описание слайда:

Слайд 4





Первичные баллы базового уровня ЕГЭ по математике переводятся в следующие школьные оценки:
Первичные баллы базового уровня ЕГЭ по математике переводятся в следующие школьные оценки:
"2" (неудовлетворительно) - от 0 до 6 баллов
"3" (удовлетворительно) - от 7 до 11 баллов
"4" (хорошо) - от 12 до 16 баллов
"5" (отлично) - от 17 до 20 баллов
Описание слайда:
Первичные баллы базового уровня ЕГЭ по математике переводятся в следующие школьные оценки: Первичные баллы базового уровня ЕГЭ по математике переводятся в следующие школьные оценки: "2" (неудовлетворительно) - от 0 до 6 баллов "3" (удовлетворительно) - от 7 до 11 баллов "4" (хорошо) - от 12 до 16 баллов "5" (отлично) - от 17 до 20 баллов

Слайд 5





Результаты ЕГЭ 2015
Средний первичный балл 13,52 (максимум 20). 
Средний тестовый балл 3,97.
Высокие показатели успешности – выше 80% –продемонстрированы при решении заданий 
1 (вычислительный пример), 
3 (решение простейшей задачи на проценты), 
6 (решение простейшей задачи на действия с целыми числами), 
9 (знание площадей, длин, масс реальных объектов), 
11 (чтение диаграмм, графиков), 
12 (решение простейших задач на действия с числами, получение информации из таблиц), 
14 (чтение графика), 
18 (логическая)
Описание слайда:
Результаты ЕГЭ 2015 Средний первичный балл 13,52 (максимум 20). Средний тестовый балл 3,97. Высокие показатели успешности – выше 80% –продемонстрированы при решении заданий 1 (вычислительный пример), 3 (решение простейшей задачи на проценты), 6 (решение простейшей задачи на действия с целыми числами), 9 (знание площадей, длин, масс реальных объектов), 11 (чтение диаграмм, графиков), 12 (решение простейших задач на действия с числами, получение информации из таблиц), 14 (чтение графика), 18 (логическая)

Слайд 6





Задание 13
Если у фигуры два одинаковых основания (призма, цилиндр, параллелепипед), то объём V=Sосн*h
Если есть вершина и только 1 основание (пирамида, конус), то объём в 3 раза меньше V=Sосн*h/3
Описание слайда:
Задание 13 Если у фигуры два одинаковых основания (призма, цилиндр, параллелепипед), то объём V=Sосн*h Если есть вершина и только 1 основание (пирамида, конус), то объём в 3 раза меньше V=Sосн*h/3

Слайд 7





Задание 13
Площадь основания второй кружки больше в 22=4 раза, а высота больше в 1,5 раза, значит, объём больше в 4*1,5= 6 раз.
Ответ. 6
Описание слайда:
Задание 13 Площадь основания второй кружки больше в 22=4 раза, а высота больше в 1,5 раза, значит, объём больше в 4*1,5= 6 раз. Ответ. 6

Слайд 8





Задание 13
Даны две кружки цилиндрической формы. Первая кружка вдвое выше второй, а вторая в четыре раза шире первой. Во сколько раз объём второй кружки больше объёма первой?
Ответ: 8
Описание слайда:
Задание 13 Даны две кружки цилиндрической формы. Первая кружка вдвое выше второй, а вторая в четыре раза шире первой. Во сколько раз объём второй кружки больше объёма первой? Ответ: 8

Слайд 9





Задание 13
В сосуд цилиндрической формы была налита вода до уровня 80 см. Её перелили во второй цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у первого. На каком уровне будет вода во втором сосуде? Ответ дайте в сантиметрах.
Описание слайда:
Задание 13 В сосуд цилиндрической формы была налита вода до уровня 80 см. Её перелили во второй цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у первого. На каком уровне будет вода во втором сосуде? Ответ дайте в сантиметрах.

Слайд 10





Задание 13
Пирамида Хеопса имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 230 м, а высота — 147 м. Сторона основания точной музейной копии этой пирамиды равна 23 см. Найдите высоту музейной копии. Ответ дайте в сантиметрах.
Ответ: 14,7
Описание слайда:
Задание 13 Пирамида Хеопса имеет форму правильной четырёхугольной пирамиды, сторона основания которой равна 230 м, а высота — 147 м. Сторона основания точной музейной копии этой пирамиды равна 23 см. Найдите высоту музейной копии. Ответ дайте в сантиметрах. Ответ: 14,7

Слайд 11





Задание 14
Это задания на производные, возрастание, убывание функций
Для записи ответов удобно заранее построить таблицу для ответов:
Описание слайда:
Задание 14 Это задания на производные, возрастание, убывание функций Для записи ответов удобно заранее построить таблицу для ответов:

Слайд 12





Задание 14 Сравнение производных
На рисунке изображён график функции, к которому проведены касательные в четырёх точках.
Ниже указаны значения производной в данных точках. Пользуясь графиком, поставьте в соответствие каждой точке значение производной в ней.
Описание слайда:
Задание 14 Сравнение производных На рисунке изображён график функции, к которому проведены касательные в четырёх точках. Ниже указаны значения производной в данных точках. Пользуясь графиком, поставьте в соответствие каждой точке значение производной в ней.

Слайд 13





Задание 14 Возрастание - убывание
Описание слайда:
Задание 14 Возрастание - убывание

Слайд 14





Задание 14 Возрастание - убывание
А: п.1,2,4 не выполнены, значит, А=п.3
Б=п.4
В= п.1
Г=п.2
Ответ. 3412
Описание слайда:
Задание 14 Возрастание - убывание А: п.1,2,4 не выполнены, значит, А=п.3 Б=п.4 В= п.1 Г=п.2 Ответ. 3412

Слайд 15





Задание 17 Решение неравенств
Описание слайда:
Задание 17 Решение неравенств

Слайд 16





Задание 17 Округление чисел
А=п.4
1=3/3 < 4/3 < 6/3=2	Б=п.1
				В=п.3
1/0,35 = 1/ (35/100) = 100 / 35 > 70/35=2
100 / 35 < 105 /35 = 3; Г=п.2
Ответ. 4132
Описание слайда:
Задание 17 Округление чисел А=п.4 1=3/3 < 4/3 < 6/3=2 Б=п.1 В=п.3 1/0,35 = 1/ (35/100) = 100 / 35 > 70/35=2 100 / 35 < 105 /35 = 3; Г=п.2 Ответ. 4132

Слайд 17





Задание 17 Сравнение чисел
1 < m <2  (*)
1) –2< –m< –1 прибавим 6:
4<6 –m<5, значит, N=п.1
2) Все части неравенства * положительны, поэтому
1 < m2 <4 , значит, M=п.2
3) Отнимем 1 от всех частей неравенства *: 0 < m < 1, значит, L=п.3
4) 1 < 2/m < 1/2	 –0,5 < – 2/m < –1 , значит, K=п.4
Ответ. 4321
Описание слайда:
Задание 17 Сравнение чисел 1 < m <2 (*) 1) –2< –m< –1 прибавим 6: 4<6 –m<5, значит, N=п.1 2) Все части неравенства * положительны, поэтому 1 < m2 <4 , значит, M=п.2 3) Отнимем 1 от всех частей неравенства *: 0 < m < 1, значит, L=п.3 4) 1 < 2/m < 1/2 –0,5 < – 2/m < –1 , значит, K=п.4 Ответ. 4321

Слайд 18





Задание 18 Пересекающиеся множества (формула)
Описание слайда:
Задание 18 Пересекающиеся множества (формула)

Слайд 19





Задание 18 Пересекающиеся множества (пример)
Описание слайда:
Задание 18 Пересекающиеся множества (пример)

Слайд 20





Задание 18 Сравнение (пример)
В городе Z в 2013 г. мальчиков родилось больше, чем девочек. Мальчиков чаще всего называли Андрей, а девочек — Мария. Выберите утверждения, которые следуют из приведённых данных.
Среди рождённых в 2013 г. в городе Z:
1) девочек с именем Мария больше, чем с именем Светлана.
2) мальчиков с именем Николай больше, чем с именем Аристарх.
3) хотя бы одного из родившихся мальчиков назвали Андреем.
4) мальчиков с именем Андрей больше, чем девочек с именем Мария.
В ответе укажите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Описание слайда:
Задание 18 Сравнение (пример) В городе Z в 2013 г. мальчиков родилось больше, чем девочек. Мальчиков чаще всего называли Андрей, а девочек — Мария. Выберите утверждения, которые следуют из приведённых данных. Среди рождённых в 2013 г. в городе Z: 1) девочек с именем Мария больше, чем с именем Светлана. 2) мальчиков с именем Николай больше, чем с именем Аристарх. 3) хотя бы одного из родившихся мальчиков назвали Андреем. 4) мальчиков с именем Андрей больше, чем девочек с именем Мария. В ответе укажите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Слайд 21





Задание 18 Сравнение (пример)
Так как максимум 75, то утверждение верно
Сравнения баллов в тексте нет, так что это не следует из условия задачи
Распределение баллов в тексте не описывается, поэтому п.3 не верен
Минимум 36 ≥ 35, поэтому утверждение верно.
Ответ. 14
Описание слайда:
Задание 18 Сравнение (пример) Так как максимум 75, то утверждение верно Сравнения баллов в тексте нет, так что это не следует из условия задачи Распределение баллов в тексте не описывается, поэтому п.3 не верен Минимум 36 ≥ 35, поэтому утверждение верно. Ответ. 14

Слайд 22





Задание 18 Сравнение 
П>М>Д		Д<C
Магнитофон и стол дороже доски, но не сказано насколько поэтому нельзя сравнить, а, значит, утверждение неверно
Верно
Верно
И принтер, и стол дороже доски, но не сказано насколько, поэтому они могут стоить одинаково. Утверждение неверно.
Ответ. 23
Описание слайда:
Задание 18 Сравнение П>М>Д Д<C Магнитофон и стол дороже доски, но не сказано насколько поэтому нельзя сравнить, а, значит, утверждение неверно Верно Верно И принтер, и стол дороже доски, но не сказано насколько, поэтому они могут стоить одинаково. Утверждение неверно. Ответ. 23

Слайд 23





Задание 19 Признаки делимости	
Число называется простым, если оно делится только на 1 и само на себя.
Первые простые числа нужно запомнить: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 (все простые числа невозможно запомнить, так как их бесконечно много)
Признаки делимости на числа:
Описание слайда:
Задание 19 Признаки делимости Число называется простым, если оно делится только на 1 и само на себя. Первые простые числа нужно запомнить: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 (все простые числа невозможно запомнить, так как их бесконечно много) Признаки делимости на числа:

Слайд 24





Задание 19
Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.
Решение. Сумма цифр постоянна. Порядок цифр неважен. Поэтому цифры будем брать в возрастающем порядке. Остаток от деления числа на 3 и на 9 совпадает с остатком суммы цифр этого числа
659 не проверяем, так как цифры совпадают с 569, значит, последняя цифра не 9. Пробуем последнюю цифру 8.
Описание слайда:
Задание 19 Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9. Решение. Сумма цифр постоянна. Порядок цифр неважен. Поэтому цифры будем брать в возрастающем порядке. Остаток от деления числа на 3 и на 9 совпадает с остатком суммы цифр этого числа 659 не проверяем, так как цифры совпадают с 569, значит, последняя цифра не 9. Пробуем последнюю цифру 8.

Слайд 25





Задание 19
Приведите пример трёхзначного натурального числа большего 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число.
Если число делится на 5*6=30, то оно делится на 5 и 6. Попробуем числа 30n+k, где k от 0 до 4.
Например 420. 4 это среднее 2 и 6, но 426 делится на 6, но не на 5. Далее 450. 4 это среднее 5 и 3, значит, нам подойдёт 453.
Проверка. 453:5=90 (ост.3), 453:6 = 75 (ост.3)
(5+3) / 2 = 4
Ответ. 453
Примечание. Возможны также ответы 573 (ост.3), 693 (ост.3) Есть ещё 480 (ост.0), но оно не подходит, так как в условии говорится, что остатки ненулевые.
Описание слайда:
Задание 19 Приведите пример трёхзначного натурального числа большего 400, которое при делении на 6 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число. Если число делится на 5*6=30, то оно делится на 5 и 6. Попробуем числа 30n+k, где k от 0 до 4. Например 420. 4 это среднее 2 и 6, но 426 делится на 6, но не на 5. Далее 450. 4 это среднее 5 и 3, значит, нам подойдёт 453. Проверка. 453:5=90 (ост.3), 453:6 = 75 (ост.3) (5+3) / 2 = 4 Ответ. 453 Примечание. Возможны также ответы 573 (ост.3), 693 (ост.3) Есть ещё 480 (ост.0), но оно не подходит, так как в условии говорится, что остатки ненулевые.

Слайд 26





Задание 19 Остатки от деления
Приведите пример трёхзначного натурального числа, большего 600, которое при делении на 4, на 5 и на 6 даёт в остатке 3 и цифры которого расположены в порядке убывания слева направо. В ответе укажите ровно одно такое число.
Решение. Возьмём число на 3 меньше искомого, оно делится на 4, 5, 6, значит, делится на их НОК (наименьшее общее кратное), то есть 22*3*5=60, значит, наше число 60n+3. Начинаем с 600, пока не выполнится условие: 603, 663, 723, 783, 843 – последнее подходит
Ответ. 843
Примечание. Ответ 963 также является верным
Описание слайда:
Задание 19 Остатки от деления Приведите пример трёхзначного натурального числа, большего 600, которое при делении на 4, на 5 и на 6 даёт в остатке 3 и цифры которого расположены в порядке убывания слева направо. В ответе укажите ровно одно такое число. Решение. Возьмём число на 3 меньше искомого, оно делится на 4, 5, 6, значит, делится на их НОК (наименьшее общее кратное), то есть 22*3*5=60, значит, наше число 60n+3. Начинаем с 600, пока не выполнится условие: 603, 663, 723, 783, 843 – последнее подходит Ответ. 843 Примечание. Ответ 963 также является верным

Слайд 27





Задание 19
Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 4536. Приведите ровно один пример такого числа.
Решение. Число кратно 5, значит, это abc0 или abc5, но 0cba – трехзначное число, значит было число abc5, а получилось 5cba. 
a b c 5
–
5c b a
4 536, значит, abc5 = 5cba + 4536, поэтому цифра a не меньше 9, значит a =9.
9bc5 = 5cb9 + 4536.
36+9=45, значит, с=b+4 или с = b +4 –10=b –6
Если с=b+4, то в следующий разряд ничего не переносится и получается b =с+5, чего быть не может (с больше и меньше b одновременно)
с =b – 6 (единица переносится в следующий разряд), тогда b = c+5+1, что совпадает с предыдущим условием. Осталось выбрать  b  и с, например, b = 6; c=0.
Проверка. 9605 – 5069 = 4536 верно
Ответ. 9605
Примечание. Есть ещё ответы 9715, 9825, 9935
Описание слайда:
Задание 19 Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 4536. Приведите ровно один пример такого числа. Решение. Число кратно 5, значит, это abc0 или abc5, но 0cba – трехзначное число, значит было число abc5, а получилось 5cba. a b c 5 – 5c b a 4 536, значит, abc5 = 5cba + 4536, поэтому цифра a не меньше 9, значит a =9. 9bc5 = 5cb9 + 4536. 36+9=45, значит, с=b+4 или с = b +4 –10=b –6 Если с=b+4, то в следующий разряд ничего не переносится и получается b =с+5, чего быть не может (с больше и меньше b одновременно) с =b – 6 (единица переносится в следующий разряд), тогда b = c+5+1, что совпадает с предыдущим условием. Осталось выбрать b и с, например, b = 6; c=0. Проверка. 9605 – 5069 = 4536 верно Ответ. 9605 Примечание. Есть ещё ответы 9715, 9825, 9935

Слайд 28





Задание 20 На смекалку (пример 1)
Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Высота дерева 10 м. Через сколько дней улитка впервые окажется на вершине дерева?
Решение. Лучше сделать таблицей, указывая все состояния (на какой высоте будет улитка после каждого действия)
Значит, улитка впервые окажется на вершине дерева через 8 дней.
Ответ. 8
Примечание. Популярна следующая ошибка: на 3 – 2 = 1 м в день поднимается улика, значит, 10/1=10 дней. Однако, в данном случае улитка через 10 дней СПУСТИТСЯ на вершину дерева, значит, она должна раньше была подняться. Такое решение неверно.
Описание слайда:
Задание 20 На смекалку (пример 1) Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Высота дерева 10 м. Через сколько дней улитка впервые окажется на вершине дерева? Решение. Лучше сделать таблицей, указывая все состояния (на какой высоте будет улитка после каждого действия) Значит, улитка впервые окажется на вершине дерева через 8 дней. Ответ. 8 Примечание. Популярна следующая ошибка: на 3 – 2 = 1 м в день поднимается улика, значит, 10/1=10 дней. Однако, в данном случае улитка через 10 дней СПУСТИТСЯ на вершину дерева, значит, она должна раньше была подняться. Такое решение неверно.

Слайд 29





Задание 20 На смекалку (пример 2)
В обменном пункте можно совершить одну из двух операций:
1) за 4 золотых монеты получить 5 серебряных и одну медную;
2) за 7 серебряных монет получить 5 золотых и одну медную.
У Николы были только серебряные монеты. После посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 90 медных. На сколько уменьшилось количество серебряных монет у Николы?
Решение. Выделяем особые моменты: 
При каждом обмене добавляется 1 медная монета, значит, всего было 90 обменов.
В итоге нет золотых монет, значит их нужно сразу разменивать, но 5 золотых не имеет общих множителей с 4, значит нужно сначала сделать 4 обмена 2 типа: 4*7=28 серебряных монет меняется на 20 золотых и 4 медных, а затем 5 обменов 1-го типа: 20 золотых меняется на 5*5=25 серебряных и 5 медных.
В итоге за 4+5=9 обменов мы из 28 серебряных получаем 25 серебряных (на 3 меньше, чем было) и 4+5=9 медных.
Так как нужно сделать 90 обменов (см.п.1), то нужно провести 90/9=20 обменов по п.2, тогда количество серебряных монет уменьшится на 3*10=30 монет.
Ответ: 30
Описание слайда:
Задание 20 На смекалку (пример 2) В обменном пункте можно совершить одну из двух операций: 1) за 4 золотых монеты получить 5 серебряных и одну медную; 2) за 7 серебряных монет получить 5 золотых и одну медную. У Николы были только серебряные монеты. После посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 90 медных. На сколько уменьшилось количество серебряных монет у Николы? Решение. Выделяем особые моменты: При каждом обмене добавляется 1 медная монета, значит, всего было 90 обменов. В итоге нет золотых монет, значит их нужно сразу разменивать, но 5 золотых не имеет общих множителей с 4, значит нужно сначала сделать 4 обмена 2 типа: 4*7=28 серебряных монет меняется на 20 золотых и 4 медных, а затем 5 обменов 1-го типа: 20 золотых меняется на 5*5=25 серебряных и 5 медных. В итоге за 4+5=9 обменов мы из 28 серебряных получаем 25 серебряных (на 3 меньше, чем было) и 4+5=9 медных. Так как нужно сделать 90 обменов (см.п.1), то нужно провести 90/9=20 обменов по п.2, тогда количество серебряных монет уменьшится на 3*10=30 монет. Ответ: 30

Слайд 30





Задание 20  На смекалку (пример 3)
В корзине лежат 25 грибов: рыжики и грузди. Известно, что среди любых 11 грибов имеется хотя бы один рыжик, а среди любых 16 грибов хотя бы один груздь. Сколько рыжиков в корзине?
Решение. Смотрим по самому плохому варианту, так как среди 11 точно есть один рыжик, значит, не рыжиков (груздей) не наберётся больше 10.
Аналогично, не груздей (рыжиков) не больше 15.
р+г ≤ 25, но так как р+г=25 по условию, то г=10, р=15
Ответ. 15
Описание слайда:
Задание 20 На смекалку (пример 3) В корзине лежат 25 грибов: рыжики и грузди. Известно, что среди любых 11 грибов имеется хотя бы один рыжик, а среди любых 16 грибов хотя бы один груздь. Сколько рыжиков в корзине? Решение. Смотрим по самому плохому варианту, так как среди 11 точно есть один рыжик, значит, не рыжиков (груздей) не наберётся больше 10. Аналогично, не груздей (рыжиков) не больше 15. р+г ≤ 25, но так как р+г=25 по условию, то г=10, р=15 Ответ. 15

Слайд 31





Полезные ссылки
http://www.fipi.ru/content/otkrytyy-bank-zadaniy-ege
http://practice.opengia.ru/ - официальный (ФИПИ) генератор вариантов базовых заданий (с таймером и возможностью многократной проверки правильности ответов)
http://alexlarin.net/ege/baza/main.html - альтернативный генератор вариантов базовых заданий (неофициальный сайт, без ответов)
http://mathb.ege.sdamgia.ru/test?a=catlistwstat – список рассмотренных задач (неофициальный сайт, с ответами и решенями)
Описание слайда:
Полезные ссылки http://www.fipi.ru/content/otkrytyy-bank-zadaniy-ege http://practice.opengia.ru/ - официальный (ФИПИ) генератор вариантов базовых заданий (с таймером и возможностью многократной проверки правильности ответов) http://alexlarin.net/ege/baza/main.html - альтернативный генератор вариантов базовых заданий (неофициальный сайт, без ответов) http://mathb.ege.sdamgia.ru/test?a=catlistwstat – список рассмотренных задач (неофициальный сайт, с ответами и решенями)

Слайд 32





Генератор заданий fipi.ru
Описание слайда:
Генератор заданий fipi.ru

Слайд 33





СПАСИБО ЗА ВНИМАНИЕ!
Описание слайда:
СПАСИБО ЗА ВНИМАНИЕ!



Похожие презентации
Mypresentation.ru
Загрузить презентацию