🗊Презентация Поверхні другого порядку

Категория: Математика
Нажмите для полного просмотра!
Поверхні другого порядку, слайд №1Поверхні другого порядку, слайд №2Поверхні другого порядку, слайд №3Поверхні другого порядку, слайд №4Поверхні другого порядку, слайд №5Поверхні другого порядку, слайд №6Поверхні другого порядку, слайд №7Поверхні другого порядку, слайд №8Поверхні другого порядку, слайд №9Поверхні другого порядку, слайд №10Поверхні другого порядку, слайд №11Поверхні другого порядку, слайд №12Поверхні другого порядку, слайд №13Поверхні другого порядку, слайд №14Поверхні другого порядку, слайд №15Поверхні другого порядку, слайд №16Поверхні другого порядку, слайд №17Поверхні другого порядку, слайд №18Поверхні другого порядку, слайд №19Поверхні другого порядку, слайд №20Поверхні другого порядку, слайд №21

Вы можете ознакомиться и скачать презентацию на тему Поверхні другого порядку. Доклад-сообщение содержит 21 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Поверхні другого порядку 
Презентація.
Описание слайда:
Поверхні другого порядку Презентація.

Слайд 2





                  История
Першу інформацію щодо властивостей геометричних тіл люди знайшли  спостерігаючи навколишній світ і в результаті практичної діяльності. З часом вчені відзначили, що деякі властивості геометричних тіл можна отримати з інших властивостей шляхом міркування. Так виникли теореми і доведення.
Вчені, які займалися вивченням властивостей поверхонь 2 порядку
Описание слайда:
История Першу інформацію щодо властивостей геометричних тіл люди знайшли спостерігаючи навколишній світ і в результаті практичної діяльності. З часом вчені відзначили, що деякі властивості геометричних тіл можна отримати з інших властивостей шляхом міркування. Так виникли теореми і доведення. Вчені, які займалися вивченням властивостей поверхонь 2 порядку

Слайд 3





     До поверхонь другого      порядку належать
Сфера
Описание слайда:
До поверхонь другого порядку належать Сфера

Слайд 4


Поверхні другого порядку, слайд №4
Описание слайда:

Слайд 5


Поверхні другого порядку, слайд №5
Описание слайда:

Слайд 6


Поверхні другого порядку, слайд №6
Описание слайда:

Слайд 7





                   Сфера
Описание слайда:
Сфера

Слайд 8





                     Конус
Описание слайда:
Конус

Слайд 9





Основні формули конуса
Об'єм конуса
R-радіус основи; H-висота
Площа бічної поверхні конуса
R-радіус основи; l-довжина твірної
Кут  при вершині прямого конуса
-кут між двома протилежними твірними
Описание слайда:
Основні формули конуса Об'єм конуса R-радіус основи; H-висота Площа бічної поверхні конуса R-радіус основи; l-довжина твірної Кут при вершині прямого конуса -кут між двома протилежними твірними

Слайд 10





                    Сфера
Описание слайда:
Сфера

Слайд 11





                       Еліпсоїд
Описание слайда:
Еліпсоїд

Слайд 12





Основні Формули еліпсоїда
Площа поверхні:
Для стислого еліпсоїда
Об'єм
Описание слайда:
Основні Формули еліпсоїда Площа поверхні: Для стислого еліпсоїда Об'єм

Слайд 13





Гіперболо́їд— вид поверхні другого порядку в тривимірному просторі, що задається в Декартових координатах рівнянням 
(Однопорожнинний гіперболоїд), формула
Описание слайда:
Гіперболо́їд— вид поверхні другого порядку в тривимірному просторі, що задається в Декартових координатах рівнянням (Однопорожнинний гіперболоїд), формула

Слайд 14





Якщо a = b, то така поверхня зветься — гіперболоїд обертання. Однопорожнинний гіперболоїд обертання можна отримати обертанням гіперболи навколо її уявної осі, двопорожнинний — навколо дійсної. Двопорожнинний гіперболоїд обертання також є геометричним місцем точок P, модуль різниці відстаней від яких до двох заданих точок A і B є сталим:  . У такому випадку точки A і B звуться фокусами Гіперболоїда. 
Якщо a = b, то така поверхня зветься — гіперболоїд обертання. Однопорожнинний гіперболоїд обертання можна отримати обертанням гіперболи навколо її уявної осі, двопорожнинний — навколо дійсної. Двопорожнинний гіперболоїд обертання також є геометричним місцем точок P, модуль різниці відстаней від яких до двох заданих точок A і B є сталим:  . У такому випадку точки A і B звуться фокусами Гіперболоїда.
Описание слайда:
Якщо a = b, то така поверхня зветься — гіперболоїд обертання. Однопорожнинний гіперболоїд обертання можна отримати обертанням гіперболи навколо її уявної осі, двопорожнинний — навколо дійсної. Двопорожнинний гіперболоїд обертання також є геометричним місцем точок P, модуль різниці відстаней від яких до двох заданих точок A і B є сталим:  . У такому випадку точки A і B звуться фокусами Гіперболоїда. Якщо a = b, то така поверхня зветься — гіперболоїд обертання. Однопорожнинний гіперболоїд обертання можна отримати обертанням гіперболи навколо її уявної осі, двопорожнинний — навколо дійсної. Двопорожнинний гіперболоїд обертання також є геометричним місцем точок P, модуль різниці відстаней від яких до двох заданих точок A і B є сталим:  . У такому випадку точки A і B звуться фокусами Гіперболоїда.

Слайд 15





В архітектурі
Лінійчата конструкція, що має форму однополостного гіперболоїда, є жорсткої: якщо балки з'єднати шарнірно, гіперболоїдна конструкція все одно буде зберігати свою форму під дією зовнішніх сил.
Описание слайда:
В архітектурі Лінійчата конструкція, що має форму однополостного гіперболоїда, є жорсткої: якщо балки з'єднати шарнірно, гіперболоїдна конструкція все одно буде зберігати свою форму під дією зовнішніх сил.

Слайд 16





Використання форми конуса
Описание слайда:
Використання форми конуса

Слайд 17


Поверхні другого порядку, слайд №17
Описание слайда:

Слайд 18





Використання форми еліптичного параболоїда
Описание слайда:
Використання форми еліптичного параболоїда

Слайд 19





         Приклади з життя сфери
Описание слайда:
Приклади з життя сфери

Слайд 20





Використання форми еліптичного циліндра
Описание слайда:
Використання форми еліптичного циліндра

Слайд 21





Використання гіперболоїда
Описание слайда:
Використання гіперболоїда



Похожие презентации
Mypresentation.ru
Загрузить презентацию