Описание слайда:
Первое доказательство. (алгебраическое)
Пусть Т—прямоугольный треугольник с катетами а, b и гипотенузой с(рис. 6, а).
Докажем, что с2=а2+Ь2.
Построим квадрат Q со стороной а+Ь (рис. 6, б). На сторонах квадрата Q возьмем точки А, В, С, D
так, чтобы отрезки АВ, ВС, CD, DA отсекали от квадрата Q прямоугольные треугольники Т1, Т2, Т3, Т4
с катетами а и b. Четырехугольник ABCD обозначим буквой Р. Покажем, что Р — квадрат со
стороной с.
Все треугольники Т1, Т2, Т3, Т4 равны треугольнику Т (по двум катетам). Поэтому их гипотенузы равны
гипотенузе треугольника Т, т. е. отрезку с. Докажем, что все углы этого четырехугольника прямые.
Пусть и — величины острых углов треугольника Т. Тогда, как вам известно, += 90°. Угол у при
вершине А четырехугольника Р вместе с углами, равными и , составляет развернутый угол.
Поэтому +=180°. И так как += 90°, то =90°. Точно так же доказывается, что и остальные углы
четырехугольника Р прямые. Следовательно, четырехугольник Р — квадрат со стороной с.
Квадрат Q со стороной а+Ь слагается из квадрата Р со стороной с и четырех треугольников, равных
треугольнику Т. Поэтому для их площадей выполняется равенство S(Q)=S(P)+4S(T) .
Так как S(Q)=(a+b) 2 ; S(P)=c2 и S(T)=1/2(ab), то, подставляя эти выражения в S(Q)=S(P)+4S(T),
получаем равенство (a+b) 2=c2+4*(1/2)ab .
Поскольку (a+b)2=a2+b2+2ab, то равенство
(a+b)2=c2+4*(1/2)ab
можно записать так: a2+b2+2ab=c2+2ab.
Из равенства a2+b2+2ab=c2+2ab следует,
что с2=а2+Ь2. Ч.Т.Д.