🗊Презентация Противоположные числа и модуль числа

Категория: Математика
Нажмите для полного просмотра!
Противоположные числа и модуль числа, слайд №1Противоположные числа и модуль числа, слайд №2Противоположные числа и модуль числа, слайд №3Противоположные числа и модуль числа, слайд №4Противоположные числа и модуль числа, слайд №5Противоположные числа и модуль числа, слайд №6Противоположные числа и модуль числа, слайд №7Противоположные числа и модуль числа, слайд №8Противоположные числа и модуль числа, слайд №9Противоположные числа и модуль числа, слайд №10Противоположные числа и модуль числа, слайд №11Противоположные числа и модуль числа, слайд №12Противоположные числа и модуль числа, слайд №13Противоположные числа и модуль числа, слайд №14Противоположные числа и модуль числа, слайд №15Противоположные числа и модуль числа, слайд №16Противоположные числа и модуль числа, слайд №17Противоположные числа и модуль числа, слайд №18Противоположные числа и модуль числа, слайд №19Противоположные числа и модуль числа, слайд №20Противоположные числа и модуль числа, слайд №21

Содержание

Вы можете ознакомиться и скачать презентацию на тему Противоположные числа и модуль числа. Доклад-сообщение содержит 21 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Проект по математике:
«Куда и сколько?»
 (о противоположных числах и модуле)
Выполнили:
ГАВРИЛОВ Данила Дмитриевич
ОБИЖАЕВ Денис Сергеевич
САЛЬНИКОВ Данила Романович
ПАНЧЕНКО Егор Александрович                    ученики 6 «Б» класса .
Описание слайда:
Проект по математике: «Куда и сколько?» (о противоположных числах и модуле) Выполнили: ГАВРИЛОВ Данила Дмитриевич ОБИЖАЕВ Денис Сергеевич САЛЬНИКОВ Данила Романович ПАНЧЕНКО Егор Александрович ученики 6 «Б» класса .

Слайд 2





Содержание.
1) Цели проекта.
   2) Противоположные числа.
   3) Модуль числа.
   4) Итог проекта.
Описание слайда:
Содержание. 1) Цели проекта. 2) Противоположные числа. 3) Модуль числа. 4) Итог проекта.

Слайд 3





Цели проекта.
Побольше узнать и углубить свои знания по теме: «Противоположные числа и модуль числа»;
Дать своим одноклассникам возможность повторить и где-то даже углубить свои знания по данной теме;
Научиться делать проекты такого плана самостоятельно.
Описание слайда:
Цели проекта. Побольше узнать и углубить свои знания по теме: «Противоположные числа и модуль числа»; Дать своим одноклассникам возможность повторить и где-то даже углубить свои знания по данной теме; Научиться делать проекты такого плана самостоятельно.

Слайд 4





Противоположные числа.
Описание слайда:
Противоположные числа.

Слайд 5





Противоположные числа на координатной прямой.
       Первое ,что мы решили изучить это противоположные                  числа на координатной прямой.
Рассмотрим чертеж. Число +3   – это координата точки А. Число -3– это координата точки В. Точки А и В находятся на одинаковом расстоянии от начала отсчета, но по разные стороны от него. Числа +3и-3 называются противоположными числами.
Описание слайда:
Противоположные числа на координатной прямой. Первое ,что мы решили изучить это противоположные числа на координатной прямой. Рассмотрим чертеж. Число +3 – это координата точки А. Число -3– это координата точки В. Точки А и В находятся на одинаковом расстоянии от начала отсчета, но по разные стороны от него. Числа +3и-3 называются противоположными числами.

Слайд 6






Значит мы можем вывести определение . 
Противоположные числа-два числа,отличающиеся друг от друга только знаками.
-5  5
Описание слайда:
Значит мы можем вывести определение . Противоположные числа-два числа,отличающиеся друг от друга только знаками. -5 5

Слайд 7





Примеры противоположных чисел.
+7                              -7
+2/3                    	-2/3
+0,29823982           -0,29823982
Описание слайда:
Примеры противоположных чисел. +7 -7 +2/3 -2/3 +0,29823982 -0,29823982

Слайд 8





Читайте правильно!!!
    Выражение   – ( – а)   =   а   можно читать разными способами:  число, противоположное числу минус   а равно   а; минус минус   а   равно   а.  
Описание слайда:
Читайте правильно!!!     Выражение   – ( – а)   =   а   можно читать разными способами:  число, противоположное числу минус   а равно   а; минус минус   а   равно   а.  

Слайд 9





Читайте правильно!!!
        Например,предложение: "Если   k   =   –7,   то     – к   =   – (– 7)   =   7 ",  — можно прочитать так: "Если   k   равно минус семи, то минус   k   равно числу,  противоположному минус семи, то есть просто семи" 

     
Описание слайда:
Читайте правильно!!!         Например,предложение: "Если   k   =   –7,   то     – к   =   – (– 7)   =   7 ",  — можно прочитать так: "Если   k   равно минус семи, то минус   k   равно числу,  противоположному минус семи, то есть просто семи"      

Слайд 10





Противоположные числа
Переходим к следующему результату - свойству симметричности, которое также вытекает из определения противоположных чисел: если число a противоположно числу b, то b противоположно a. Здесь комментарии излишни. 
Озвучим следующее утверждение: для каждого действительного числа есть единственное противоположное число. Оно базируется на том, что данной точке координатной прямой соответствует единственное действительное число.
Описание слайда:
Противоположные числа Переходим к следующему результату - свойству симметричности, которое также вытекает из определения противоположных чисел: если число a противоположно числу b, то b противоположно a. Здесь комментарии излишни. Озвучим следующее утверждение: для каждого действительного числа есть единственное противоположное число. Оно базируется на том, что данной точке координатной прямой соответствует единственное действительное число.

Слайд 11





Противоположные числа
Из определения модуля числа вытекает, что модули противоположных чисел равны. Действительно, точки координатной прямой, соответствующие противоположным числам, находятся на одинаковом расстоянии от начала отсчета. 
Наконец, сумма противоположных чисел равна нулю.
Описание слайда:
Противоположные числа Из определения модуля числа вытекает, что модули противоположных чисел равны. Действительно, точки координатной прямой, соответствующие противоположным числам, находятся на одинаковом расстоянии от начала отсчета. Наконец, сумма противоположных чисел равна нулю.

Слайд 12





Модуль числа
Описание слайда:
Модуль числа

Слайд 13





Немного из истории

Термин «модуль» (от лат. modulus – мера) ввел английский математик Роджер Котес (1682 – 1716).
Знак модуля ввел немецкий математик Карл Вейерштрасс (1815 – 1897) в 1841 г.
Обозначается модуль посредством символа       / /.
Описание слайда:
Немного из истории Термин «модуль» (от лат. modulus – мера) ввел английский математик Роджер Котес (1682 – 1716). Знак модуля ввел немецкий математик Карл Вейерштрасс (1815 – 1897) в 1841 г. Обозначается модуль посредством символа / /.

Слайд 14





Модуль числа
Обозначим на координатной прямой две точки, которые соответствуют числам −4 и 2.
Точка A, соответствующая числу −4, находится на расстоянии 4 единичных отрезков от точки 0 (начала отсчёта), то есть длина отрезка OA равна 4 единицам.
Число 4 (длина отрезка OA) называют модулем числа −4.
Обозначают модуль числа так: |−4| = 4
Читают символы выше следующим образом: «модуль числа минус четыре равен четырём».
Описание слайда:
Модуль числа Обозначим на координатной прямой две точки, которые соответствуют числам −4 и 2. Точка A, соответствующая числу −4, находится на расстоянии 4 единичных отрезков от точки 0 (начала отсчёта), то есть длина отрезка OA равна 4 единицам. Число 4 (длина отрезка OA) называют модулем числа −4. Обозначают модуль числа так: |−4| = 4 Читают символы выше следующим образом: «модуль числа минус четыре равен четырём».

Слайд 15





Что такое модуль?
Модулем числа 7 называют расстояние (в единичных отрезках) от начала координат до точки A(-7)
                             ,    ,
Описание слайда:
Что такое модуль? Модулем числа 7 называют расстояние (в единичных отрезках) от начала координат до точки A(-7) , ,

Слайд 16





Модуль числа

Запомните! Модулем рационального числа называют расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу.
Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать, что модуль числа не может быть отрицательным
Описание слайда:
Модуль числа Запомните! Модулем рационального числа называют расстояние от начала отсчёта до точки координатной прямой, соответствующей этому числу. Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать, что модуль числа не может быть отрицательным

Слайд 17





Модуль числа
Озвученное определение модуля числа часто записывают в следующем виде , эта запись означает, что , если a>0, , если a=0, и , если a<0. 
Запись можно представить в более компактной форме . Эта запись означает, что , если (a больше или равно 0), и , если a<0. 
Также имеет место и запись . Здесь отдельно следует пояснить случай, когда a=0. В этом случае имеем , но −0=0, так как нуль считают числом, которое противоположно самому себе.
Описание слайда:
Модуль числа Озвученное определение модуля числа часто записывают в следующем виде , эта запись означает, что , если a>0, , если a=0, и , если a<0. Запись можно представить в более компактной форме . Эта запись означает, что , если (a больше или равно 0), и , если a<0. Также имеет место и запись . Здесь отдельно следует пояснить случай, когда a=0. В этом случае имеем , но −0=0, так как нуль считают числом, которое противоположно самому себе.

Слайд 18





Примеры уравнения с модулем.
|0,63|:|x|=|-0,9|
Решение:
0,63:|x|=0,9
|x|=0,63:0,9
|x|=6,3:9
|x|=0,7 или -0,7
Ответ:0,7 или -0,7
Описание слайда:
Примеры уравнения с модулем. |0,63|:|x|=|-0,9| Решение: 0,63:|x|=0,9 |x|=0,63:0,9 |x|=6,3:9 |x|=0,7 или -0,7 Ответ:0,7 или -0,7

Слайд 19





Модуль числа
Приведем примеры нахождения модуля числа с помощью озвученного определения. Для примера найдем модули чисел 15  . Начнем с нахождения . Так как число 15 – положительное, то его модуль по определению равен самому этому числу, то есть, . А чему равен модуль числа ? Так как - отрицательное число, то его модуль равен числу, противоположному числу , то есть, числу . .
Описание слайда:
Модуль числа Приведем примеры нахождения модуля числа с помощью озвученного определения. Для примера найдем модули чисел 15 . Начнем с нахождения . Так как число 15 – положительное, то его модуль по определению равен самому этому числу, то есть, . А чему равен модуль числа ? Так как - отрицательное число, то его модуль равен числу, противоположному числу , то есть, числу . .

Слайд 20





Модуль числа
В заключение этого  приведем один вывод, который очень удобно применять на практике при нахождении модуля числа. Из определения модуля числа следует, что модуль числа равен числу под знаком модуля без учета его знака, а из рассмотренных выше примеров это очень отчетливо видно. Озвученное утверждение объясняет, почему модуль числа называют еще абсолютной величиной числа. Так модуль числа и абсолютная величина числа – это одно и то же.
Описание слайда:
Модуль числа В заключение этого приведем один вывод, который очень удобно применять на практике при нахождении модуля числа. Из определения модуля числа следует, что модуль числа равен числу под знаком модуля без учета его знака, а из рассмотренных выше примеров это очень отчетливо видно. Озвученное утверждение объясняет, почему модуль числа называют еще абсолютной величиной числа. Так модуль числа и абсолютная величина числа – это одно и то же.

Слайд 21





Итоги и выводы нашей работы.
Мы изучили эту тему полностью и в ней разобрались. Мы уверены, что вы тоже.Этот проект принёс нам пользу. Надеемся, что он вам понравился.
Описание слайда:
Итоги и выводы нашей работы. Мы изучили эту тему полностью и в ней разобрались. Мы уверены, что вы тоже.Этот проект принёс нам пользу. Надеемся, что он вам понравился.



Похожие презентации
Mypresentation.ru
Загрузить презентацию