🗊Презентация Решение текстовых задач на работу. Подготовка к ЕГЭ

Категория: Математика
Нажмите для полного просмотра!
Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №1Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №2Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №3Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №4Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №5Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №6Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №7Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №8Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №9Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №10Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №11Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №12

Вы можете ознакомиться и скачать презентацию на тему Решение текстовых задач на работу. Подготовка к ЕГЭ. Доклад-сообщение содержит 12 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Решение  текстовых задач «на работу»
Описание слайда:
Решение текстовых задач «на работу»

Слайд 2





Результаты решения текстовых задач на ЕГЭ по математике.
Описание слайда:
Результаты решения текстовых задач на ЕГЭ по математике.

Слайд 3





Особенности решения задач «на работу».
А=Р*t, где А-работа
                   Р- производительность труда 
                   t- время
Р=А/t
t=А/Р
Если в условии не дана вся работа, то её можно принять за 1
Общая производительность равна сумме производительностей.
Описание слайда:
Особенности решения задач «на работу». А=Р*t, где А-работа Р- производительность труда t- время Р=А/t t=А/Р Если в условии не дана вся работа, то её можно принять за 1 Общая производительность равна сумме производительностей.

Слайд 4





Пример 1
             Для наполнения плавательного бассейна водой имеются три насоса. Первому насосу для наполнения бассейна требуется времени в три раза меньше, чем второму, и на 2 ч   больше, чем третьему. Три насоса, работая вместе, наполнили бы бассейн за 3ч, но по условиям эксплуатации одновременно должны работать только два насоса. Определите минимальную стоимость наполнения бассейна, если 1ч работы любого из насосов стоит 140 рублей.
      Решение: Эту задачу удобно решать с помощью таблицы.
Описание слайда:
Пример 1 Для наполнения плавательного бассейна водой имеются три насоса. Первому насосу для наполнения бассейна требуется времени в три раза меньше, чем второму, и на 2 ч больше, чем третьему. Три насоса, работая вместе, наполнили бы бассейн за 3ч, но по условиям эксплуатации одновременно должны работать только два насоса. Определите минимальную стоимость наполнения бассейна, если 1ч работы любого из насосов стоит 140 рублей. Решение: Эту задачу удобно решать с помощью таблицы.

Слайд 5


Решение текстовых задач на работу. Подготовка к ЕГЭ, слайд №5
Описание слайда:

Слайд 6





Алгоритм решения задачи
    1. Внесем в таблицу известные величины ( работу примем за 1)
    2. Одну из неизвестных величин обозначим за          х.
    3. Остальные неизвестные величины выразим через х, используя условие задачи или формулы.
.   4Составим уравнение.
    5. Решим уравнение и ответим на главный вопрос задачи.
Описание слайда:
Алгоритм решения задачи 1. Внесем в таблицу известные величины ( работу примем за 1) 2. Одну из неизвестных величин обозначим за х. 3. Остальные неизвестные величины выразим через х, используя условие задачи или формулы. . 4Составим уравнение. 5. Решим уравнение и ответим на главный вопрос задачи.

Слайд 7





Уравнение
1/х+2 + 1/3(х+2) + 1/х = 1/3
Решив уравнение, мы найдем х=6
6ч- время наполнения бассейна третьим насосом.
Тогда время первого насоса 8ч, второго 24ч.
Значит минимальное время работы двух насосов – это время работы 1 и3 насосов ,т.е. 14ч
Определим минимальную стоимость наполнения бассейна двумя насосами.
140*14=1960(руб.)
                            Ответ: 1960 руб.
Описание слайда:
Уравнение 1/х+2 + 1/3(х+2) + 1/х = 1/3 Решив уравнение, мы найдем х=6 6ч- время наполнения бассейна третьим насосом. Тогда время первого насоса 8ч, второго 24ч. Значит минимальное время работы двух насосов – это время работы 1 и3 насосов ,т.е. 14ч Определим минимальную стоимость наполнения бассейна двумя насосами. 140*14=1960(руб.) Ответ: 1960 руб.

Слайд 8





Реши сам!
Два маляра, работая вместе, могут за 1ч покрасить стену площадью 40 кв.м. Первый маляр, работая отдельно, может покрасить 50 кв. м стены на 4ч быстрее, чем второй покрасит 90 кв.м такой же стены. За сколько часов первый маляр сможет покрасит 100 кв. м стены?
Ответ: 4ч
Описание слайда:
Реши сам! Два маляра, работая вместе, могут за 1ч покрасить стену площадью 40 кв.м. Первый маляр, работая отдельно, может покрасить 50 кв. м стены на 4ч быстрее, чем второй покрасит 90 кв.м такой же стены. За сколько часов первый маляр сможет покрасит 100 кв. м стены? Ответ: 4ч

Слайд 9





Пример 2
Описание слайда:
Пример 2

Слайд 10





Пример 3
Бак заполняют керосином за 2часа 30 минут с помощью трех насосов, работающих вместе. Производительности насосов относятся как 3:5:8. Сколько процентов объёма будет заполнено за 1час 18 минут совместной работы второго и третьего насосов?
Описание слайда:
Пример 3 Бак заполняют керосином за 2часа 30 минут с помощью трех насосов, работающих вместе. Производительности насосов относятся как 3:5:8. Сколько процентов объёма будет заполнено за 1час 18 минут совместной работы второго и третьего насосов?

Слайд 11





Решение задачи
  Так как объём бака не указан, то примем объём бака за 1. Пусть коэффициент пропорциональности равен х, тогда  производительности насосов соответственно равны 3х, 5х, 8х. И время наполнения бака  при совместной работе всех трех насосов равно  1/3х+5х+8х = 1/ 16х или, по условию задачи, 2ч 30 мин. 
Решим уравнение  1/16х = 2,5
Х =1/ 40
Производительность второго насоса равна 1/ 40 * 5 = 1/ 8
Производительность третьего насоса равна 1/ 40 * 8 = 1/ 5.
Совместная производительность второго и третьего насосов равна 1/ 8 + 1/ 5 =13/40
За 1ч 30мин второй и третий насосы наполнят 13/ 40 * 78/ 60 = 13/ 40 * 1,3 = 16,9/ 40 = 0,4225 объёма бака.
     Итак, при совместной работе 2 и 3 насосов за 1ч 18 мин будет заполнено 0,4225 *100% =42,25% объёма бака.
Описание слайда:
Решение задачи Так как объём бака не указан, то примем объём бака за 1. Пусть коэффициент пропорциональности равен х, тогда производительности насосов соответственно равны 3х, 5х, 8х. И время наполнения бака при совместной работе всех трех насосов равно 1/3х+5х+8х = 1/ 16х или, по условию задачи, 2ч 30 мин. Решим уравнение 1/16х = 2,5 Х =1/ 40 Производительность второго насоса равна 1/ 40 * 5 = 1/ 8 Производительность третьего насоса равна 1/ 40 * 8 = 1/ 5. Совместная производительность второго и третьего насосов равна 1/ 8 + 1/ 5 =13/40 За 1ч 30мин второй и третий насосы наполнят 13/ 40 * 78/ 60 = 13/ 40 * 1,3 = 16,9/ 40 = 0,4225 объёма бака. Итак, при совместной работе 2 и 3 насосов за 1ч 18 мин будет заполнено 0,4225 *100% =42,25% объёма бака.

Слайд 12





Реши сам !
   Два фермера, работая вместе могут вспахать поле за 25 ч. Производительности труда первого и второго фермеров относятся как 2:5. Фермеры планируют  работать поочередно. Сколько времени должен проработать второй фермер, чтобы это поле было вспахано за 45,5 ч?
Ответ: 28 ч.
Описание слайда:
Реши сам ! Два фермера, работая вместе могут вспахать поле за 25 ч. Производительности труда первого и второго фермеров относятся как 2:5. Фермеры планируют работать поочередно. Сколько времени должен проработать второй фермер, чтобы это поле было вспахано за 45,5 ч? Ответ: 28 ч.



Похожие презентации
Mypresentation.ru
Загрузить презентацию