🗊Презентация Способы решения Тригонометрических уравнений

Категория: Математика
Нажмите для полного просмотра!
Способы решения Тригонометрических уравнений, слайд №1Способы решения Тригонометрических уравнений, слайд №2Способы решения Тригонометрических уравнений, слайд №3Способы решения Тригонометрических уравнений, слайд №4Способы решения Тригонометрических уравнений, слайд №5Способы решения Тригонометрических уравнений, слайд №6Способы решения Тригонометрических уравнений, слайд №7Способы решения Тригонометрических уравнений, слайд №8Способы решения Тригонометрических уравнений, слайд №9Способы решения Тригонометрических уравнений, слайд №10Способы решения Тригонометрических уравнений, слайд №11Способы решения Тригонометрических уравнений, слайд №12Способы решения Тригонометрических уравнений, слайд №13

Вы можете ознакомиться и скачать презентацию на тему Способы решения Тригонометрических уравнений. Доклад-сообщение содержит 13 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Способы решения Тригонометрических уравнений
Выполнила: 
Рубцова Анна (10А класс)
Учитель:
Давтян Римма Артемовна
Описание слайда:
Способы решения Тригонометрических уравнений Выполнила: Рубцова Анна (10А класс) Учитель: Давтян Римма Артемовна

Слайд 2





Основные способы решения Тригонометрических уравнений
 Приведение к простейшим тригонометрическим уравнениям

 Замена переменной

 Метод понижения порядка уравнения

 Однородные уравнения

 Метод преобразования уравнения с помощью тригонометрических формул
Описание слайда:
Основные способы решения Тригонометрических уравнений Приведение к простейшим тригонометрическим уравнениям Замена переменной Метод понижения порядка уравнения Однородные уравнения Метод преобразования уравнения с помощью тригонометрических формул

Слайд 3





1. Приведение к простейшим тригонометрическим уравнениям – Схема Решения
Шаг 1. Выразить тригонометрическую функцию через известные компоненты.
Шаг 2. Найти аргумент функции по формулам:
cos x = a; x = ±arccos a + 2πn, n ЄZ.
sin x = a; x = (-1)n arcsin a + πn, n Є Z.
tg x = a; x = arctg a + πn, n Є Z.
ctg x = a; x = arcctg a + πn, n Є Z.
Шаг 3. Найти неизвестную переменную.
Описание слайда:
1. Приведение к простейшим тригонометрическим уравнениям – Схема Решения Шаг 1. Выразить тригонометрическую функцию через известные компоненты. Шаг 2. Найти аргумент функции по формулам: cos x = a; x = ±arccos a + 2πn, n ЄZ. sin x = a; x = (-1)n arcsin a + πn, n Є Z. tg x = a; x = arctg a + πn, n Є Z. ctg x = a; x = arcctg a + πn, n Є Z. Шаг 3. Найти неизвестную переменную.

Слайд 4





1. Приведение к простейшим тригонометрическим уравнениям – ПРИМЕР
2 cos(3x – π/4) = -√2. 
Решение.
1) cos(3x – π/4) = -√2/2.
2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;
3x – π/4 = ±3π/4 + 2πn, n Є Z.
3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;
x = ±3π/12 + π/12 + 2πn/3, n Є Z;
x = ±π/4 + π/12 + 2πn/3, n Є Z.
Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.
Описание слайда:
1. Приведение к простейшим тригонометрическим уравнениям – ПРИМЕР 2 cos(3x – π/4) = -√2. Решение. 1) cos(3x – π/4) = -√2/2. 2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z; 3x – π/4 = ±3π/4 + 2πn, n Є Z. 3) 3x = ±3π/4 + π/4 + 2πn, n Є Z; x = ±3π/12 + π/12 + 2πn/3, n Є Z; x = ±π/4 + π/12 + 2πn/3, n Є Z. Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

Слайд 5





2. Замена переменной – Схема Решения
Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.
Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).
Шаг 3. Записать и решить полученное алгебраическое уравнение.
Шаг 4. Сделать обратную замену.
Шаг 5. Решить простейшее тригонометрическое уравнение.
Описание слайда:
2. Замена переменной – Схема Решения Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций. Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t). Шаг 3. Записать и решить полученное алгебраическое уравнение. Шаг 4. Сделать обратную замену. Шаг 5. Решить простейшее тригонометрическое уравнение.

Слайд 6





2. Замена Переменной – ПРИМЕР
2cos2 (x/2) – 5sin (x/2) – 5 = 0.
Решение.
1) 2(1 – sin2 (x/2)) – 5sin (x/2) – 5 = 0;
2sin2 (x/2) + 5sin (x/2) + 3 = 0.
2) Пусть sin (x/2) = t, где |t| ≤ 1.
3) 2t2 + 5t + 3 = 0;
t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.
4) sin (x/2) = 1.
5) x/2 = π/2 + 2πn, n Є Z;
x = π + 4πn, n Є Z.
Ответ: x = π + 4πn, n Є Z.
Описание слайда:
2. Замена Переменной – ПРИМЕР 2cos2 (x/2) – 5sin (x/2) – 5 = 0. Решение. 1) 2(1 – sin2 (x/2)) – 5sin (x/2) – 5 = 0; 2sin2 (x/2) + 5sin (x/2) + 3 = 0. 2) Пусть sin (x/2) = t, где |t| ≤ 1. 3) 2t2 + 5t + 3 = 0; t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1. 4) sin (x/2) = 1. 5) x/2 = π/2 + 2πn, n Є Z; x = π + 4πn, n Є Z. Ответ: x = π + 4πn, n Є Z.

Слайд 7





3. Метод понижения порядка уравнения – Схема Решения
Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:
sin2 x = 1/2 • (1 – cos 2x);
cos2 x = 1/2 • (1 + cos 2x);
tg2 x = (1 – cos 2x) / (1 + cos 2x).
Шаг 2. Решить полученное уравнение с помощью методов I и II.
Описание слайда:
3. Метод понижения порядка уравнения – Схема Решения Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени: sin2 x = 1/2 • (1 – cos 2x); cos2 x = 1/2 • (1 + cos 2x); tg2 x = (1 – cos 2x) / (1 + cos 2x). Шаг 2. Решить полученное уравнение с помощью методов I и II.

Слайд 8





3. Метод понижения порядка уравнения – ПРИМЕР
cos 2x + cos2 x = 5/4.
Решение.
1) cos 2x + 1/2 • (1 + cos 2x) = 5/4.
2) cos 2x + 1/2 + 1/2 • cos 2x = 5/4;
3/2 • cos 2x = 3/4;
cos 2x = 1/2;
2x = ±π/3 + 2πn, n Є Z;    
x = ±π/6 + πn, n Є Z.
Ответ:  x = ±π/6 + πn, n Є Z.
Описание слайда:
3. Метод понижения порядка уравнения – ПРИМЕР cos 2x + cos2 x = 5/4. Решение. 1) cos 2x + 1/2 • (1 + cos 2x) = 5/4. 2) cos 2x + 1/2 + 1/2 • cos 2x = 5/4; 3/2 • cos 2x = 3/4; cos 2x = 1/2; 2x = ±π/3 + 2πn, n Є Z; x = ±π/6 + πn, n Є Z. Ответ: x = ±π/6 + πn, n Є Z.

Слайд 9





4. Однородные уравнения – Схема Решения
Шаг 1. Привести данное уравнение к виду
a) a sin x + b cos x = 0 (однородное уравнение первой степени)
или к виду
б) a sin2 x + b sin x • cos x + c cos2 x = 0 (однородное уравнение второй степени).
Шаг 2. Разделить обе части уравнения на
а) cos x ≠ 0;
б) cos2 x ≠ 0;
и получить уравнение относительно tg x:
а) a tg x + b = 0;
б) a tg2 x + b arctg x + c = 0.
Шаг 3. Решить уравнение известными способами.
Описание слайда:
4. Однородные уравнения – Схема Решения Шаг 1. Привести данное уравнение к виду a) a sin x + b cos x = 0 (однородное уравнение первой степени) или к виду б) a sin2 x + b sin x • cos x + c cos2 x = 0 (однородное уравнение второй степени). Шаг 2. Разделить обе части уравнения на а) cos x ≠ 0; б) cos2 x ≠ 0; и получить уравнение относительно tg x: а) a tg x + b = 0; б) a tg2 x + b arctg x + c = 0. Шаг 3. Решить уравнение известными способами.

Слайд 10





4. Однородные уравнения – ПРИМЕР
5sin2 x + 3sin x • cos x – 4 = 0.
Решение.
1) 5sin2 x + 3sin x • cos x – 4(sin2 x + cos2 x) = 0;
5sin2 x + 3sin x • cos x – 4sin² x – 4cos2 x = 0;
sin2 x + 3sin x • cos x – 4cos2 x = 0/cos2 x ≠ 0.
2) tg2 x + 3tg x – 4 = 0.
3) Пусть tg x = t, тогда
t2 + 3t – 4 = 0;
t = 1 или t = -4, значит
tg x = 1 или tg x = -4.
Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.
Ответ:  x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.
Описание слайда:
4. Однородные уравнения – ПРИМЕР 5sin2 x + 3sin x • cos x – 4 = 0. Решение. 1) 5sin2 x + 3sin x • cos x – 4(sin2 x + cos2 x) = 0; 5sin2 x + 3sin x • cos x – 4sin² x – 4cos2 x = 0; sin2 x + 3sin x • cos x – 4cos2 x = 0/cos2 x ≠ 0. 2) tg2 x + 3tg x – 4 = 0. 3) Пусть tg x = t, тогда t2 + 3t – 4 = 0; t = 1 или t = -4, значит tg x = 1 или tg x = -4. Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z. Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

Слайд 11





5. Метод преобразования уравнения с помощью тригонометрических формул – Схема Решения
Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.
Шаг 2. Решить полученное уравнение известными методами.
Описание слайда:
5. Метод преобразования уравнения с помощью тригонометрических формул – Схема Решения Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV. Шаг 2. Решить полученное уравнение известными методами.

Слайд 12





5. Метод преобразования уравнения с помощью тригонометрических формул – ПРИМЕР
sin x + sin 2x + sin 3x = 0.
Решение.
1) (sin x + sin 3x) + sin 2x = 0;
2sin 2x • cos x + sin 2x = 0.
2) sin 2x • (2cos x + 1) = 0;
sin 2x = 0 или 2cos x + 1 = 0;
Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.
Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.
В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.
Ответ:  х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.
Описание слайда:
5. Метод преобразования уравнения с помощью тригонометрических формул – ПРИМЕР sin x + sin 2x + sin 3x = 0. Решение. 1) (sin x + sin 3x) + sin 2x = 0; 2sin 2x • cos x + sin 2x = 0. 2) sin 2x • (2cos x + 1) = 0; sin 2x = 0 или 2cos x + 1 = 0; Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2. Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z. В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z. Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Слайд 13





СПАСИБО
Описание слайда:
СПАСИБО



Похожие презентации
Mypresentation.ru
Загрузить презентацию