🗊Свойство периодичности - презентация по Алгебре_

Категория: Алгебра
Нажмите для полного просмотра!
Свойство периодичности - презентация по Алгебре_, слайд №1Свойство периодичности - презентация по Алгебре_, слайд №2Свойство периодичности - презентация по Алгебре_, слайд №3Свойство периодичности - презентация по Алгебре_, слайд №4Свойство периодичности - презентация по Алгебре_, слайд №5Свойство периодичности - презентация по Алгебре_, слайд №6Свойство периодичности - презентация по Алгебре_, слайд №7Свойство периодичности - презентация по Алгебре_, слайд №8Свойство периодичности - презентация по Алгебре_, слайд №9Свойство периодичности - презентация по Алгебре_, слайд №10Свойство периодичности - презентация по Алгебре_, слайд №11

Вы можете ознакомиться и скачать Свойство периодичности - презентация по Алгебре_. Презентация содержит 11 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Свойство периодичности - презентация по Алгебре_, слайд №1
Описание слайда:

Слайд 2





Периодические функции
В природе и технике часто встречаются явления, повторяющиеся по истечении некоторого промежутка времени. 
Например, при вращении Земли вокруг Солнца её расстояние от солнца всё время меняется, но после полного оборота Земля оказывается на том же расстоянии от солнца, сто и год тому назад. Возвращается на своё место после полного оборота и лопасть турбины. 
Такие периодические повторяющиеся процессы описываются периодическими функциями.
Описание слайда:
Периодические функции В природе и технике часто встречаются явления, повторяющиеся по истечении некоторого промежутка времени. Например, при вращении Земли вокруг Солнца её расстояние от солнца всё время меняется, но после полного оборота Земля оказывается на том же расстоянии от солнца, сто и год тому назад. Возвращается на своё место после полного оборота и лопасть турбины. Такие периодические повторяющиеся процессы описываются периодическими функциями.

Слайд 3





Периодические функции
Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода).
Все тригонометрические функции являются периодическими.
Описание слайда:
Периодические функции Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода). Все тригонометрические функции являются периодическими.

Слайд 4





Периодические функции
Определение 1
Говорят, что функция y=f(x), x принадлежит Х имеет период Т, если для любого x принадлежит Х выполняются равенства 
                 f(x-T)=f(x)=f(x+T).
Из этого определения следует, что если функция с периодом Т определена в точке х, то она определена в точках х+Т ,х-Т.
Любая функция имеет период, равный нулю(при Т=0 равенство превращается в тождество 
               f(x-0)=f(x)=f(x+0)).
Описание слайда:
Периодические функции Определение 1 Говорят, что функция y=f(x), x принадлежит Х имеет период Т, если для любого x принадлежит Х выполняются равенства f(x-T)=f(x)=f(x+T). Из этого определения следует, что если функция с периодом Т определена в точке х, то она определена в точках х+Т ,х-Т. Любая функция имеет период, равный нулю(при Т=0 равенство превращается в тождество f(x-0)=f(x)=f(x+0)).

Слайд 5





Периодические функции
Определение 2
Функцию, имеющую отличный от нуля период Т, называют периодической.
Если функция y=f(x), x принадлежит Х имеет период Т, то любое число, кратное Т (т.е. число вида kT, k принадлежит Z), также является её периодом.
Описание слайда:
Периодические функции Определение 2 Функцию, имеющую отличный от нуля период Т, называют периодической. Если функция y=f(x), x принадлежит Х имеет период Т, то любое число, кратное Т (т.е. число вида kT, k принадлежит Z), также является её периодом.

Слайд 6





Периодические функции
Периодическая функция имеет бесконечное множество различных периодов. В большинстве случаев среди положительных периодов периодической функции есть наименьший . Его называют основным периодом этой функции, все остальные её периоды кратны основному периоду.
Описание слайда:
Периодические функции Периодическая функция имеет бесконечное множество различных периодов. В большинстве случаев среди положительных периодов периодической функции есть наименьший . Его называют основным периодом этой функции, все остальные её периоды кратны основному периоду.

Слайд 7





Периодические функции
     График периодической функции обладает следующей особенностью. 
Если Т - основной период функции y=f(x), то для построения её графика достаточно построить ветвь графика на одном из промежутков длины Т, а затем выполнить параллельный перенос этой ветви вдоль оси х на +Т,+2Т,+3Т, … . 
Чаще всего в качестве такого промежутка длины Т выбирают промежуток с концами в точках  (-Т/2;0)и(Т/2;0).
Описание слайда:
Периодические функции График периодической функции обладает следующей особенностью. Если Т - основной период функции y=f(x), то для построения её графика достаточно построить ветвь графика на одном из промежутков длины Т, а затем выполнить параллельный перенос этой ветви вдоль оси х на +Т,+2Т,+3Т, … . Чаще всего в качестве такого промежутка длины Т выбирают промежуток с концами в точках (-Т/2;0)и(Т/2;0).

Слайд 8





Периодические функции
     Но не у всякой периодической функции есть основной период. Классический пример - функция Дирихле y=d (x), где
             1,если х- рациональное число;
d (x)=    0,если х- иррациональное число.
Описание слайда:
Периодические функции Но не у всякой периодической функции есть основной период. Классический пример - функция Дирихле y=d (x), где 1,если х- рациональное число; d (x)= 0,если х- иррациональное число.

Слайд 9





Периодические функции
Любое рациональное число r является периодом этой функции. 
В самом деле, если х-рациональное число, 
   то х-r, x+r –рациональные числа, а потому
           d (x-r)=d (x)=d (x+r)=1. 
Если же х – иррациональное число, то 
х-r, х+r – иррациональные числа, а потому 
    d (x-r)=d (x)=d (x+r) = 0.
Описание слайда:
Периодические функции Любое рациональное число r является периодом этой функции. В самом деле, если х-рациональное число, то х-r, x+r –рациональные числа, а потому d (x-r)=d (x)=d (x+r)=1. Если же х – иррациональное число, то х-r, х+r – иррациональные числа, а потому d (x-r)=d (x)=d (x+r) = 0.

Слайд 10





Периодические функции
Итак, любое рациональное число является периодом функции Дирихле. 
Но среди положительных рациональных чисел нет наименьшнго числа, значит, 
у периодической функции Дирихле нет основного периода.
Описание слайда:
Периодические функции Итак, любое рациональное число является периодом функции Дирихле. Но среди положительных рациональных чисел нет наименьшнго числа, значит, у периодической функции Дирихле нет основного периода.

Слайд 11


Свойство периодичности - презентация по Алгебре_, слайд №11
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию