🗊Презентация Термины технологического прогнозирования

Категория: Математика
Нажмите для полного просмотра!
Термины технологического прогнозирования, слайд №1Термины технологического прогнозирования, слайд №2Термины технологического прогнозирования, слайд №3Термины технологического прогнозирования, слайд №4Термины технологического прогнозирования, слайд №5Термины технологического прогнозирования, слайд №6Термины технологического прогнозирования, слайд №7Термины технологического прогнозирования, слайд №8Термины технологического прогнозирования, слайд №9Термины технологического прогнозирования, слайд №10Термины технологического прогнозирования, слайд №11Термины технологического прогнозирования, слайд №12Термины технологического прогнозирования, слайд №13Термины технологического прогнозирования, слайд №14Термины технологического прогнозирования, слайд №15Термины технологического прогнозирования, слайд №16Термины технологического прогнозирования, слайд №17Термины технологического прогнозирования, слайд №18Термины технологического прогнозирования, слайд №19Термины технологического прогнозирования, слайд №20Термины технологического прогнозирования, слайд №21Термины технологического прогнозирования, слайд №22Термины технологического прогнозирования, слайд №23Термины технологического прогнозирования, слайд №24Термины технологического прогнозирования, слайд №25Термины технологического прогнозирования, слайд №26Термины технологического прогнозирования, слайд №27Термины технологического прогнозирования, слайд №28Термины технологического прогнозирования, слайд №29Термины технологического прогнозирования, слайд №30Термины технологического прогнозирования, слайд №31Термины технологического прогнозирования, слайд №32Термины технологического прогнозирования, слайд №33Термины технологического прогнозирования, слайд №34Термины технологического прогнозирования, слайд №35Термины технологического прогнозирования, слайд №36Термины технологического прогнозирования, слайд №37Термины технологического прогнозирования, слайд №38Термины технологического прогнозирования, слайд №39Термины технологического прогнозирования, слайд №40Термины технологического прогнозирования, слайд №41Термины технологического прогнозирования, слайд №42Термины технологического прогнозирования, слайд №43Термины технологического прогнозирования, слайд №44Термины технологического прогнозирования, слайд №45Термины технологического прогнозирования, слайд №46Термины технологического прогнозирования, слайд №47Термины технологического прогнозирования, слайд №48Термины технологического прогнозирования, слайд №49Термины технологического прогнозирования, слайд №50Термины технологического прогнозирования, слайд №51Термины технологического прогнозирования, слайд №52Термины технологического прогнозирования, слайд №53Термины технологического прогнозирования, слайд №54Термины технологического прогнозирования, слайд №55Термины технологического прогнозирования, слайд №56Термины технологического прогнозирования, слайд №57Термины технологического прогнозирования, слайд №58Термины технологического прогнозирования, слайд №59Термины технологического прогнозирования, слайд №60Термины технологического прогнозирования, слайд №61Термины технологического прогнозирования, слайд №62Термины технологического прогнозирования, слайд №63Термины технологического прогнозирования, слайд №64Термины технологического прогнозирования, слайд №65

Содержание

Вы можете ознакомиться и скачать презентацию на тему Термины технологического прогнозирования. Доклад-сообщение содержит 65 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1





Тема: Основные принципы    технологического прогнозирования 
Основные термины технологического прогнозирования
Описание слайда:
Тема: Основные принципы технологического прогнозирования Основные термины технологического прогнозирования

Слайд 2





Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. 
Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. 
Технология — означает широкую область целенаправленного применения физических наук, наук о жизни и наук о поведении. 
Технологическое прогнозирование — это вероятностная оценка на относительно высоком уровне уверенности будущего перемещения технологии.
Описание слайда:
Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. Прогноз — вероятностное утверждение о будущем с относительно высокой степенью достоверности. Технология — означает широкую область целенаправленного применения физических наук, наук о жизни и наук о поведении. Технологическое прогнозирование — это вероятностная оценка на относительно высоком уровне уверенности будущего перемещения технологии.

Слайд 3





Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных странах.
Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных странах.
		Бурные темпы научно-технического прогресса, возрастающее влияния науки и техники на все стороны экономической и социальной жизни обуславливают закономерный интерес к проблемам прогнозирования.
		Процессы развития науки и техники, протекающие в прошлом на протяжении десятков и сотен лет, совершаются в наши дни неизмеримо быстрее.
Описание слайда:
Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных странах. Перемещение технологии — процесс освоения новой техники, новых научных разработок в различных странах. Бурные темпы научно-технического прогресса, возрастающее влияния науки и техники на все стороны экономической и социальной жизни обуславливают закономерный интерес к проблемам прогнозирования. Процессы развития науки и техники, протекающие в прошлом на протяжении десятков и сотен лет, совершаются в наши дни неизмеримо быстрее.

Слайд 4





Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план электрификации России (план ГОЭЛРО), принятый по инициативе В.И. Ленина в 1922 году. 

Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план электрификации России (план ГОЭЛРО), принятый по инициативе В.И. Ленина в 1922 году. 

Возникновение технологического прогнозирования: 
в промышленности США - конец 50-х годов. 
в Западной Европе - 60 - е годы. 
	Если в 1947 году прогнозированием занимались лишь около 20% крупных промышленных фирм США, то в 1966 году — 90% компаний составляли прогнозы на З и более лет.
Описание слайда:
Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план электрификации России (план ГОЭЛРО), принятый по инициативе В.И. Ленина в 1922 году. Первым в истории нормативным прогнозом научно-технического прогресса на несколько лет был план электрификации России (план ГОЭЛРО), принятый по инициативе В.И. Ленина в 1922 году. Возникновение технологического прогнозирования: в промышленности США - конец 50-х годов. в Западной Европе - 60 - е годы. Если в 1947 году прогнозированием занимались лишь около 20% крупных промышленных фирм США, то в 1966 году — 90% компаний составляли прогнозы на З и более лет.

Слайд 5





 Точность прогнозирования 
Процесс решения прогнозной задачи заключается в выполнении последовательности арифметических, логических и других операций, направленных на преобразование исходных данных в конечный результат. 
Последовательность и содержание этих операций определяются выбранным методом прогнозирования и способом реализации вычислительных операций. Поэтому даже при наличии точных исходных данных решение прогнозной задачи будет приближенным в силу невозможности идеально строгой формулировки задачи для применения выбранного метода.
Описание слайда:
Точность прогнозирования Процесс решения прогнозной задачи заключается в выполнении последовательности арифметических, логических и других операций, направленных на преобразование исходных данных в конечный результат. Последовательность и содержание этих операций определяются выбранным методом прогнозирования и способом реализации вычислительных операций. Поэтому даже при наличии точных исходных данных решение прогнозной задачи будет приближенным в силу невозможности идеально строгой формулировки задачи для применения выбранного метода.

Слайд 6





Погрешность решения прогнозной задачи  Е определяется как сумма погрешностей информационных данных Еu, погрешности метода Еµ, погрешности вычислений Еν  и нерегулярной погрешности Еλ:
Погрешность решения прогнозной задачи  Е определяется как сумма погрешностей информационных данных Еu, погрешности метода Еµ, погрешности вычислений Еν  и нерегулярной погрешности Еλ:
 


где Еλ— непредсказуемые события.
Описание слайда:
Погрешность решения прогнозной задачи Е определяется как сумма погрешностей информационных данных Еu, погрешности метода Еµ, погрешности вычислений Еν и нерегулярной погрешности Еλ: Погрешность решения прогнозной задачи Е определяется как сумма погрешностей информационных данных Еu, погрешности метода Еµ, погрешности вычислений Еν и нерегулярной погрешности Еλ: где Еλ— непредсказуемые события.

Слайд 7





Методы изыскательного технологического прогнозирования
Вероятность прогноза можно выразить графиком наступления события «А», (где Р- это вероятность события А)
Описание слайда:
Методы изыскательного технологического прогнозирования Вероятность прогноза можно выразить графиком наступления события «А», (где Р- это вероятность события А)

Слайд 8





Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водородном топливе, которая выполняется во многих странах мира.
Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водородном топливе, которая выполняется во многих странах мира.
 Научно-техническое прогнозирование в автомобильной промышленности, требует ответа на следующие вопросы: 
1) каковы будут возможности выпускаемых отраслью машин в ближайшие 5-10-15 лет при условии сохранения объективно сложившихся тенденций развития данной отрасли (исследовательский прогноз);
Описание слайда:
Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водородном топливе, которая выполняется во многих странах мира. Примером изыскательного технологического прогнозирования может служить разработка автомобиля на водородном топливе, которая выполняется во многих странах мира. Научно-техническое прогнозирование в автомобильной промышленности, требует ответа на следующие вопросы: 1) каковы будут возможности выпускаемых отраслью машин в ближайшие 5-10-15 лет при условии сохранения объективно сложившихся тенденций развития данной отрасли (исследовательский прогноз);

Слайд 9





2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 лет, для эффективного решения задач различных групп потребителей этих машин (нормативный прогноз); 
2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 лет, для эффективного решения задач различных групп потребителей этих машин (нормативный прогноз); 
3) каков будет разрыв между возможными и потребными значениями характеристик машин в последующие 5-10-15 лет (прогноз целей научно- технического развития); 
 4) какие проблемы и задачи научного, технического, экономического и организационного характера необходимо решить для достижения научно- технического развития отрасли (прогноз ресурсов).
Описание слайда:
2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 лет, для эффективного решения задач различных групп потребителей этих машин (нормативный прогноз); 2) каковы будут требуемые значения характеристик машин, производимых в отрасли в ближайшие 5-10-15 лет, для эффективного решения задач различных групп потребителей этих машин (нормативный прогноз); 3) каков будет разрыв между возможными и потребными значениями характеристик машин в последующие 5-10-15 лет (прогноз целей научно- технического развития); 4) какие проблемы и задачи научного, технического, экономического и организационного характера необходимо решить для достижения научно- технического развития отрасли (прогноз ресурсов).

Слайд 10





Смена поколений машин является конкретным отображением использования результатов фундаментальных наук в общественном производстве. 
Смена поколений машин является конкретным отображением использования результатов фундаментальных наук в общественном производстве. 
Эволюционное изменение характеристик машин внутри поколения можно выразить логической сигмоидальной кривой.
Описание слайда:
Смена поколений машин является конкретным отображением использования результатов фундаментальных наук в общественном производстве. Смена поколений машин является конкретным отображением использования результатов фундаментальных наук в общественном производстве. Эволюционное изменение характеристик машин внутри поколения можно выразить логической сигмоидальной кривой.

Слайд 11





Время жизни поколения машин равно t1-t5. 
Время жизни поколения машин равно t1-t5. 
На отрезке t1 t2 появляются первые модели машин нового поколения, хотя преобладают машины старого поколения. 
Период времени t1 t2 в течение которого появляются первые машины нового поколения, имеющие малый удельный вес в общем парке автомобилей отрасли, называют латентным периодом. 
На временном отрезке t2 t4  происходит бурное развитие машин нового поколения. Этот процесс отражается на кривой резко возрастающим участком ВD — период роста.
Описание слайда:
Время жизни поколения машин равно t1-t5. Время жизни поколения машин равно t1-t5. На отрезке t1 t2 появляются первые модели машин нового поколения, хотя преобладают машины старого поколения. Период времени t1 t2 в течение которого появляются первые машины нового поколения, имеющие малый удельный вес в общем парке автомобилей отрасли, называют латентным периодом. На временном отрезке t2 t4 происходит бурное развитие машин нового поколения. Этот процесс отражается на кривой резко возрастающим участком ВD — период роста.

Слайд 12





На временном отрезке  t4 t5  происходит постепенный спад темпов роста параметров машин данного поколения: физический принцип себя исчерпал. Отрезок кривой DЕ характеризует процесс резкого замедления роста параметров. Этот период называется периодом сатурации. Именно в этот период появляются идеи применения машин нового поколения. 
На временном отрезке  t4 t5  происходит постепенный спад темпов роста параметров машин данного поколения: физический принцип себя исчерпал. Отрезок кривой DЕ характеризует процесс резкого замедления роста параметров. Этот период называется периодом сатурации. Именно в этот период появляются идеи применения машин нового поколения. 
Точка С называется точкой перегиба и характеризует начальный момент от экспоненциального роста к сигмоидальной кривой.
Описание слайда:
На временном отрезке t4 t5 происходит постепенный спад темпов роста параметров машин данного поколения: физический принцип себя исчерпал. Отрезок кривой DЕ характеризует процесс резкого замедления роста параметров. Этот период называется периодом сатурации. Именно в этот период появляются идеи применения машин нового поколения. На временном отрезке t4 t5 происходит постепенный спад темпов роста параметров машин данного поколения: физический принцип себя исчерпал. Отрезок кривой DЕ характеризует процесс резкого замедления роста параметров. Этот период называется периодом сатурации. Именно в этот период появляются идеи применения машин нового поколения. Точка С называется точкой перегиба и характеризует начальный момент от экспоненциального роста к сигмоидальной кривой.

Слайд 13





Сигмоидальная кривая должна удовлетворять следующим условиям: 
Сигмоидальная кривая должна удовлетворять следующим условиям: 
кривая должна иметь точку перегиба; 
не содержать точек экстремума; 
должен существовать предел, к которому в бесконечности приближается кривая.
Сигмоидальные кривые применяются для кратко- и среднесрочного прогнозирования роста научно-технических параметров внутри одного поколения машин отрасли.
Описание слайда:
Сигмоидальная кривая должна удовлетворять следующим условиям: Сигмоидальная кривая должна удовлетворять следующим условиям: кривая должна иметь точку перегиба; не содержать точек экстремума; должен существовать предел, к которому в бесконечности приближается кривая. Сигмоидальные кривые применяются для кратко- и среднесрочного прогнозирования роста научно-технических параметров внутри одного поколения машин отрасли.

Слайд 14





Ключевые подходы к прогнозированию
Кривая АС на временном участке t1 t3 при прогнозировании может быть описана различными кривыми.
Описание слайда:
Ключевые подходы к прогнозированию Кривая АС на временном участке t1 t3 при прогнозировании может быть описана различными кривыми.

Слайд 15





При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки прогноза. 
При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки прогноза. 
Существует правило, по которому срок прогноза равен 1/3 исходного ряда. 

Пример:
  - если имеется ряд развития машин с 1990 по 2002 год, то по этим данным можно сделать прогноз на четыре года с 2003 по 2007 г.г.
Описание слайда:
При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки прогноза. При проведении экстраполяционных расчетов исследователь должен четко представить возможные сроки прогноза. Существует правило, по которому срок прогноза равен 1/3 исходного ряда. Пример: - если имеется ряд развития машин с 1990 по 2002 год, то по этим данным можно сделать прогноз на четыре года с 2003 по 2007 г.г.

Слайд 16





Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных оценок объекта путем опроса экспертов. 
Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных оценок объекта путем опроса экспертов. 
Информационный массив прогнозирования включает в себя заполненные экспертами таблицы и анкеты. Этот метод относится к классу исследовательских и применяется для определения времени совершения события в будущем.
Описание слайда:
Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных оценок объекта путем опроса экспертов. Методом эвристического прогнозирования называется метод получения и специальной обработки прогнозных оценок объекта путем опроса экспертов. Информационный массив прогнозирования включает в себя заполненные экспертами таблицы и анкеты. Этот метод относится к классу исследовательских и применяется для определения времени совершения события в будущем.

Слайд 17





Эксперт может дать три оценки срока наступления события А: 
Эксперт может дать три оценки срока наступления события А: 
     - оптимистическая оценка;
      - пессимистическая оценка; 
      - мода, наиболее вероятная оценка.
Математическое ожидание события Ā и дисперсия σ определяются по формулам:
Описание слайда:
Эксперт может дать три оценки срока наступления события А: Эксперт может дать три оценки срока наступления события А: - оптимистическая оценка; - пессимистическая оценка; - мода, наиболее вероятная оценка. Математическое ожидание события Ā и дисперсия σ определяются по формулам:

Слайд 18





На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет.
На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет.
Описание слайда:
На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет. На основании полученных значений Ā и σ строятся модели прогнозируемого объекта для нескольких лет.

Слайд 19





Теоретические основы прогнозирования технического состояния машин 

Основные требования, предъявляемые к прогнозированию технического состояния автомобилей .
Целью деятельности специалиста по технической эксплуатации автомобильного транспорта является обеспечение оптимального уровня затрат на поддержание работоспособности автомобиля в заданных условиях эксплуатации.
Описание слайда:
Теоретические основы прогнозирования технического состояния машин Основные требования, предъявляемые к прогнозированию технического состояния автомобилей . Целью деятельности специалиста по технической эксплуатации автомобильного транспорта является обеспечение оптимального уровня затрат на поддержание работоспособности автомобиля в заданных условиях эксплуатации.

Слайд 20





Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля в прошлом, его состояния в момент прогнозирования и методики прогнозирования на будущее. 
Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля в прошлом, его состояния в момент прогнозирования и методики прогнозирования на будущее. 

    Можно выделить три этапа полного прогнозирования: 
1) ретроспекция; 
2) диагностика; 
    3) прогноз.
Описание слайда:
Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля в прошлом, его состояния в момент прогнозирования и методики прогнозирования на будущее. Реализация этой цели возможна при наличии информации об изменении технического состояния автомобиля в прошлом, его состояния в момент прогнозирования и методики прогнозирования на будущее. Можно выделить три этапа полного прогнозирования: 1) ретроспекция; 2) диагностика; 3) прогноз.

Слайд 21





Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявлении и уточнении характеристик и структурных параметров процесса с его анализом и расчленением, установлении характера и изменений этих показателей. В результате исследований разрабатывают динамическую модель изучаемого процесса. 
Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявлении и уточнении характеристик и структурных параметров процесса с его анализом и расчленением, установлении характера и изменений этих показателей. В результате исследований разрабатывают динамическую модель изучаемого процесса. 
На втором этапе — «диагностика» — устанавливают начальные и допускаемые изменения характеристик параметров, проводят их измерение, а также выбирают методы прогнозирования.
Описание слайда:
Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявлении и уточнении характеристик и структурных параметров процесса с его анализом и расчленением, установлении характера и изменений этих показателей. В результате исследований разрабатывают динамическую модель изучаемого процесса. Первый этап — «ретроспекция» — заключается в исследовании прогнозируемого процесса в прошлом, выявлении и уточнении характеристик и структурных параметров процесса с его анализом и расчленением, установлении характера и изменений этих показателей. В результате исследований разрабатывают динамическую модель изучаемого процесса. На втором этапе — «диагностика» — устанавливают начальные и допускаемые изменения характеристик параметров, проводят их измерение, а также выбирают методы прогнозирования.

Слайд 22





Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. 
для прогнозирования необходимо знать: 
1) критерии отказа (износ деталей, температура деталей, образование и развитие трещин, стоимость устранения отказа); 
2) методы количественного прогнозирования (функциональные закономерности); 
3) методику сбора данных или измёрения значений деталей в эксплуатации; 
4) основные факторы, влияющие на интенсивность изменения технического состояния автомобилей. 

Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. 
для прогнозирования необходимо знать: 
1) критерии отказа (износ деталей, температура деталей, образование и развитие трещин, стоимость устранения отказа); 
2) методы количественного прогнозирования (функциональные закономерности); 
3) методику сбора данных или измёрения значений деталей в эксплуатации; 
4) основные факторы, влияющие на интенсивность изменения технического состояния автомобилей.
Описание слайда:
Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. для прогнозирования необходимо знать: 1) критерии отказа (износ деталей, температура деталей, образование и развитие трещин, стоимость устранения отказа); 2) методы количественного прогнозирования (функциональные закономерности); 3) методику сбора данных или измёрения значений деталей в эксплуатации; 4) основные факторы, влияющие на интенсивность изменения технического состояния автомобилей. Третий, заключительный, этап обычно включает прогноз параметров процесса в будущем. для прогнозирования необходимо знать: 1) критерии отказа (износ деталей, температура деталей, образование и развитие трещин, стоимость устранения отказа); 2) методы количественного прогнозирования (функциональные закономерности); 3) методику сбора данных или измёрения значений деталей в эксплуатации; 4) основные факторы, влияющие на интенсивность изменения технического состояния автомобилей.

Слайд 23





Прогнозирование по среднестатистическому изменению параметра
Этот метод позволяет предсказывать изменение параметра по данным среднестатистического его изменения при отсутствии информации о наработке в прошлом. 
 Исследователь оперирует следующими данными: 
- текущим значением параметра объекта исследования, и (t); 
- номинальным значением параметра,  
- допускаемым значением параметра в эксплуатации, 
- математической моделью изменения параметра.
Описание слайда:
Прогнозирование по среднестатистическому изменению параметра Этот метод позволяет предсказывать изменение параметра по данным среднестатистического его изменения при отсутствии информации о наработке в прошлом. Исследователь оперирует следующими данными: - текущим значением параметра объекта исследования, и (t); - номинальным значением параметра, - допускаемым значением параметра в эксплуатации, - математической моделью изменения параметра.

Слайд 24





Задача состоит в том, чтобы определить остаточный ресурс объекта          с известной величиной       - скорости изменения параметра: 
Задача состоит в том, чтобы определить остаточный ресурс объекта          с известной величиной       - скорости изменения параметра: 
Линейная аппроксимация параметра определяется по формуле:
Описание слайда:
Задача состоит в том, чтобы определить остаточный ресурс объекта с известной величиной - скорости изменения параметра: Задача состоит в том, чтобы определить остаточный ресурс объекта с известной величиной - скорости изменения параметра: Линейная аппроксимация параметра определяется по формуле:

Слайд 25





Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопротивление хрупкому и усталостному разрушению. 
Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопротивление хрупкому и усталостному разрушению. 
Критерии работоспособности агрегата или автомобиля в целом выбирают в зависимости от конкретных условий работы. При заданных рабочих режимах интенсивность изменения технического состояния агрегата, а, следовательно и отказа, зависит от состояния среды и изменения свойств материала, неизбежного при изменении температуры на поверхности трения. 
За экономический критерий технического состояния автомобиля принимаются удельные затраты на поддержание работоспособности.
Описание слайда:
Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопротивление хрупкому и усталостному разрушению. Одним из критериев работоспособности детали, элемента конструкции является несущая способность, сопротивление хрупкому и усталостному разрушению. Критерии работоспособности агрегата или автомобиля в целом выбирают в зависимости от конкретных условий работы. При заданных рабочих режимах интенсивность изменения технического состояния агрегата, а, следовательно и отказа, зависит от состояния среды и изменения свойств материала, неизбежного при изменении температуры на поверхности трения. За экономический критерий технического состояния автомобиля принимаются удельные затраты на поддержание работоспособности.

Слайд 26





Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изнашивания), уравнение примет степенную функцию:
Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изнашивания), уравнение примет степенную функцию:
В этом случае остаточный ресурс определится по формуле:
Описание слайда:
Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изнашивания), уравнение примет степенную функцию: Если учитывать влияние эксплуатационных факторов на интенсивность изменения параметра (например, изнашивания), уравнение примет степенную функцию: В этом случае остаточный ресурс определится по формуле:

Слайд 27





Пример 
Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающихся в картер на холостом ходу.  Измерение параметра показало 59 л/мин. Допускаемая и номинальная величина равна 90 и 28 л/мин. Известно, что изменение количества газов, прорывающихся в картер подчиняется степенной функции 
Пример 
Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающихся в картер на холостом ходу.  Измерение параметра показало 59 л/мин. Допускаемая и номинальная величина равна 90 и 28 л/мин. Известно, что изменение количества газов, прорывающихся в картер подчиняется степенной функции 
    
с показателем степени α=1,3 при показателе приработки      =1 л/мин. Время работы двигателя составило 2000 часов.
Описание слайда:
Пример Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающихся в картер на холостом ходу. Измерение параметра показало 59 л/мин. Допускаемая и номинальная величина равна 90 и 28 л/мин. Известно, что изменение количества газов, прорывающихся в картер подчиняется степенной функции Пример Определите остаточный ресурс гильзопоршневой группы двигателя по количеству газов, прорывающихся в картер на холостом ходу. Измерение параметра показало 59 л/мин. Допускаемая и номинальная величина равна 90 и 28 л/мин. Известно, что изменение количества газов, прорывающихся в картер подчиняется степенной функции с показателем степени α=1,3 при показателе приработки =1 л/мин. Время работы двигателя составило 2000 часов.

Слайд 28





Решение:
Решение:
Из уравнения для текущего значения параметра, ч
Найдём     - скорость среднего статистического измерения параметра, л/ч:
Описание слайда:
Решение: Решение: Из уравнения для текущего значения параметра, ч Найдём - скорость среднего статистического измерения параметра, л/ч:

Слайд 29





2) Из уравнения допускаемой величины параметра
2) Из уравнения допускаемой величины параметра
Найдём           , ч:
Ответ:
Ожидаемый оставляет остаточный ресурс составляет 2087 часов.
Описание слайда:
2) Из уравнения допускаемой величины параметра 2) Из уравнения допускаемой величины параметра Найдём , ч: Ответ: Ожидаемый оставляет остаточный ресурс составляет 2087 часов.

Слайд 30





Прогнозирование по реализации изменения параметра 
При прогнозировании по реализации считают, что изменение параметра элемента характеризуется экстраполяционной функцией, которая определяется по изменению параметра в прошлом.
Описание слайда:
Прогнозирование по реализации изменения параметра При прогнозировании по реализации считают, что изменение параметра элемента характеризуется экстраполяционной функцией, которая определяется по изменению параметра в прошлом.

Слайд 31





Функции могут выражаться:
Функции могут выражаться:
Описание слайда:
Функции могут выражаться: Функции могут выражаться:

Слайд 32





При решении задачи расчета ресурса исследователь должен иметь: 
При решении задачи расчета ресурса исследователь должен иметь: 

- результаты измерения параметра; 

- допускаемую величину параметра в эксплуатации; 

- наработку объекта на период измерения параметра объекта исследования.
Описание слайда:
При решении задачи расчета ресурса исследователь должен иметь: При решении задачи расчета ресурса исследователь должен иметь: - результаты измерения параметра; - допускаемую величину параметра в эксплуатации; - наработку объекта на период измерения параметра объекта исследования.

Слайд 33





Планирование и проведение многофакторного эксперимента
Основой прогнозирования является знание процессов, закономерности их развития.
 Многофакторный эксперимент позволяет проводить активный эксперимент с факторами, влияющими на техническое состояние узла, агрегата или в целом автомобиля. 
Полученные результаты эксперимента описывают уравнением, которое называется математической моделью.
Описание слайда:
Планирование и проведение многофакторного эксперимента Основой прогнозирования является знание процессов, закономерности их развития. Многофакторный эксперимент позволяет проводить активный эксперимент с факторами, влияющими на техническое состояние узла, агрегата или в целом автомобиля. Полученные результаты эксперимента описывают уравнением, которое называется математической моделью.

Слайд 34





Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. 
При этом экспериментатор должен: 
- провести минимум опытов; 
-  одновременно варьировать всеми переменными,     определяющими процесс, по специальным правилам- алгоритмам; 
- использовать математический аппарат; 
- выбрать четкую стратегию проведения эксперимента. 

Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. 
При этом экспериментатор должен: 
- провести минимум опытов; 
-  одновременно варьировать всеми переменными,     определяющими процесс, по специальным правилам- алгоритмам; 
- использовать математический аппарат; 
- выбрать четкую стратегию проведения эксперимента.
Описание слайда:
Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом экспериментатор должен: - провести минимум опытов; - одновременно варьировать всеми переменными, определяющими процесс, по специальным правилам- алгоритмам; - использовать математический аппарат; - выбрать четкую стратегию проведения эксперимента. Планирование эксперимента — это процедура выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью. При этом экспериментатор должен: - провести минимум опытов; - одновременно варьировать всеми переменными, определяющими процесс, по специальным правилам- алгоритмам; - использовать математический аппарат; - выбрать четкую стратегию проведения эксперимента.

Слайд 35





Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при которых все независимые переменные, кроме одной, принимаются постоянными. В таких экспериментах невозможно определить характер взаимодействия факторов между собой.
Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при которых все независимые переменные, кроме одной, принимаются постоянными. В таких экспериментах невозможно определить характер взаимодействия факторов между собой.
Описание слайда:
Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при которых все независимые переменные, кроме одной, принимаются постоянными. В таких экспериментах невозможно определить характер взаимодействия факторов между собой. Классический эксперимент - представляет собой последовательность однофакторных экспериментов, при которых все независимые переменные, кроме одной, принимаются постоянными. В таких экспериментах невозможно определить характер взаимодействия факторов между собой.

Слайд 36





Факторы и параметры оптимизации в планировании 
многофакторного эксперимента 

Многофакторное планирование позволяет получить математическую модель процесса, в котором задействованы одновременно все факторы. 

Содержание планирования проиллюстрируем исследованием “черного ящика”. Например, пусть объектом исследования является износ деталей.
Описание слайда:
Факторы и параметры оптимизации в планировании многофакторного эксперимента Многофакторное планирование позволяет получить математическую модель процесса, в котором задействованы одновременно все факторы. Содержание планирования проиллюстрируем исследованием “черного ящика”. Например, пусть объектом исследования является износ деталей.

Слайд 37






Входными величинами в черный ящик будут: 
р - давление удельное; 
V - скорость относительных перемещений 
деталей; 
S - зазор между деталями; τ - время работы;
 F - площадь контакта; Т - температура.
Описание слайда:
Входными величинами в черный ящик будут: р - давление удельное; V - скорость относительных перемещений деталей; S - зазор между деталями; τ - время работы; F - площадь контакта; Т - температура.

Слайд 38





Выходными величинами будут: 
γ - скорость изнашивания; 
Выходными величинами будут: 
γ - скорость изнашивания; 
    А - работа ударной нагрузки в сопряжении;
И - величина износа детали. 

Переменные х1, х2 ,...хn - называются факторами. 
Выходные величины y1,y2,…yn - называются откликом или параметром оптимизации. 

 Каждый фактор может принимать в опыте одно из нескольких значений. Такие значения будем называть уровнями.
Описание слайда:
Выходными величинами будут: γ - скорость изнашивания; Выходными величинами будут: γ - скорость изнашивания; А - работа ударной нагрузки в сопряжении; И - величина износа детали. Переменные х1, х2 ,...хn - называются факторами. Выходные величины y1,y2,…yn - называются откликом или параметром оптимизации. Каждый фактор может принимать в опыте одно из нескольких значений. Такие значения будем называть уровнями.

Слайд 39





Обозначим число факторов через - k, а число уровней - через р.
Обозначим число факторов через - k, а число уровней - через р.
  Чтобы узнать число состояний выходных параметров оптимизации следует возвести число уровней р в степень числа факторов k 
В нашем примере число факторов k=6.
Пусть факторы имеют по пять уровней, тогда число состояний выходных параметров составит:
Описание слайда:
Обозначим число факторов через - k, а число уровней - через р. Обозначим число факторов через - k, а число уровней - через р. Чтобы узнать число состояний выходных параметров оптимизации следует возвести число уровней р в степень числа факторов k В нашем примере число факторов k=6. Пусть факторы имеют по пять уровней, тогда число состояний выходных параметров составит:

Слайд 40





В этих условиях следует отказаться от опытов, так как объем данных слишком велик. 
Следует поставить вопрос: сколько и каких опытов необходимо включать в эксперимент? 
При планировании эксперимента принято устанавливать два уровня для каждого фактора, тогда состояние выходного параметра будет принимать например, при k=6  

В этих условиях следует отказаться от опытов, так как объем данных слишком велик. 
Следует поставить вопрос: сколько и каких опытов необходимо включать в эксперимент? 
При планировании эксперимента принято устанавливать два уровня для каждого фактора, тогда состояние выходного параметра будет принимать например, при k=6
Описание слайда:
В этих условиях следует отказаться от опытов, так как объем данных слишком велик. Следует поставить вопрос: сколько и каких опытов необходимо включать в эксперимент? При планировании эксперимента принято устанавливать два уровня для каждого фактора, тогда состояние выходного параметра будет принимать например, при k=6 В этих условиях следует отказаться от опытов, так как объем данных слишком велик. Следует поставить вопрос: сколько и каких опытов необходимо включать в эксперимент? При планировании эксперимента принято устанавливать два уровня для каждого фактора, тогда состояние выходного параметра будет принимать например, при k=6

Слайд 41





Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов: 
Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов: 
Нижний уровень обозначают (-) 
Верхний уровень обозначают (+)
Описание слайда:
Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов: Например, при исследовании износа детали U=f(p, V, S, τ, F, T) возможны следующие значения факторов: Нижний уровень обозначают (-) Верхний уровень обозначают (+)

Слайд 42





Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр). 
Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр). 

Параметр оптимизации должен быть: 
- эффективным, как показатель; 
    -  универсальными (то есть отражать состояние исследуемого процесса); 
- количественным и выражаться одним числом; 
- иметь физический смысл, быть простым и вычисляемым; 
- существующим для всех различных состояний факторов.
Описание слайда:
Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр). Параметр оптимизации - это признак, по которому мы должны оптимизировать процесс (выходной параметр). Параметр оптимизации должен быть: - эффективным, как показатель; - универсальными (то есть отражать состояние исследуемого процесса); - количественным и выражаться одним числом; - иметь физический смысл, быть простым и вычисляемым; - существующим для всех различных состояний факторов.

Слайд 43






К факторам предъявляют следующие требования: 

К факторам предъявляют следующие требования: 

1) Управляемость. 
2) Непосредственное влияние на объект исследования. 
З) Сочетание факторов не должно приводить к остановке эксперимента.
Описание слайда:
К факторам предъявляют следующие требования: К факторам предъявляют следующие требования: 1) Управляемость. 2) Непосредственное влияние на объект исследования. З) Сочетание факторов не должно приводить к остановке эксперимента.

Слайд 44





Математическое описание процесса изменения выходного параметра 
(выбор модели) 
Под моделью мы понимаем вид функции отклика:
                          y=f (x1,x2,…..xn) 
Математическая модель позволяет предсказать дальнейший результат опыта.
Обычно для математической модели выбирают полином:
              y=B0+B1X1+B2X2+…..+BnXn
Если неизвестную функцию заменяем полиномом, то эта операция называется апроксамацией
Описание слайда:
Математическое описание процесса изменения выходного параметра (выбор модели) Под моделью мы понимаем вид функции отклика: y=f (x1,x2,…..xn) Математическая модель позволяет предсказать дальнейший результат опыта. Обычно для математической модели выбирают полином: y=B0+B1X1+B2X2+…..+BnXn Если неизвестную функцию заменяем полиномом, то эта операция называется апроксамацией

Слайд 45





Полный факторный эксперимент. 
Для проведения эксперимента необходимо установить уровни факторов. Их устанавливают по результатам аналогичных опытов. 
Основной - нулевой уровень находится между min(-) и max(+) значениями. Интервал J между min и max должен быть одинаковым. Например, при исследовании износа детали 
       U=f (p, V, S, τ, F, T) приняты следующие значения;
Описание слайда:
Полный факторный эксперимент. Для проведения эксперимента необходимо установить уровни факторов. Их устанавливают по результатам аналогичных опытов. Основной - нулевой уровень находится между min(-) и max(+) значениями. Интервал J между min и max должен быть одинаковым. Например, при исследовании износа детали U=f (p, V, S, τ, F, T) приняты следующие значения;

Слайд 46


Термины технологического прогнозирования, слайд №46
Описание слайда:

Слайд 47





Интервалы выбирают из условий работы агрегата.
Интервалы выбирают из условий работы агрегата.
   Уровни факторов имеют численные значения при составлении уравнения и рассчитываются по формуле:
Пример:                           ;                        ,
где X1Н – нижний уровень, X1В – верхний уровень,
       ,           , - реальные физические значения.
Описание слайда:
Интервалы выбирают из условий работы агрегата. Интервалы выбирают из условий работы агрегата. Уровни факторов имеют численные значения при составлении уравнения и рассчитываются по формуле: Пример: ; , где X1Н – нижний уровень, X1В – верхний уровень, , , - реальные физические значения.

Слайд 48





Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “проскочить” оптимум. Поэтому как выбор основного уровня, так и ширина интервала влияет на результаты эксперимента.  
Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “проскочить” оптимум. Поэтому как выбор основного уровня, так и ширина интервала влияет на результаты эксперимента.  
В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом.
Описание слайда:
Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “проскочить” оптимум. Поэтому как выбор основного уровня, так и ширина интервала влияет на результаты эксперимента. Величина интервала влияет на результат исследования, так как при постановке эксперимента можно “проскочить” оптимум. Поэтому как выбор основного уровня, так и ширина интервала влияет на результаты эксперимента. В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом.

Слайд 49





Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы - значениям факторов. Такие таблицы называются - матрицами. 
Матрица планирования эксперимента      (полный факторный эксперимент) 
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы - значениям факторов. Такие таблицы называются - матрицами. 
Матрица планирования эксперимента      (полный факторный эксперимент)
Описание слайда:
Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы - значениям факторов. Такие таблицы называются - матрицами. Матрица планирования эксперимента (полный факторный эксперимент) Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы - значениям факторов. Такие таблицы называются - матрицами. Матрица планирования эксперимента (полный факторный эксперимент)

Слайд 50





Матрица планирования               (полный факторный эксперимент) 
Матрица планирования               (полный факторный эксперимент)
Описание слайда:
Матрица планирования (полный факторный эксперимент) Матрица планирования (полный факторный эксперимент)

Слайд 51





Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. 
Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. 
В матрице планирования эксперимента знаки (—) и (+) обозначают два уровня факторов: нижний и вёрхний. 
Полный факторный эксперимент обладает избыточностью информации. 
Поэтому экспериментатор может исключить несущественные результаты эксперимента и сократить число опытов.
Описание слайда:
Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. Произведения факторов х1 х2 х3 показывают их взаимодействие и называются определяющим контрастом. В матрице планирования эксперимента знаки (—) и (+) обозначают два уровня факторов: нижний и вёрхний. Полный факторный эксперимент обладает избыточностью информации. Поэтому экспериментатор может исключить несущественные результаты эксперимента и сократить число опытов.

Слайд 52





Пример:
Пример:
    для оценки влияния трёх факторов на параметр оптимизации можно воспользоваться половиной полного факторного эксперимента     ,  используя опыты с первого по четвертый, или с пятого по восьмой. Эти половины матрицы называются полурепликой. 
Полуреплики отличаются между собой знаком в произведении факторов по опытам. Для опытов с первого по четвертый это произведение    
    х1 х2 х3= +1, а с пятого по восьмой опыты 
     х1 х2 х3= -1. Каждая из полуреплик представляет дробный факторный эксперимент.
Описание слайда:
Пример: Пример: для оценки влияния трёх факторов на параметр оптимизации можно воспользоваться половиной полного факторного эксперимента , используя опыты с первого по четвертый, или с пятого по восьмой. Эти половины матрицы называются полурепликой. Полуреплики отличаются между собой знаком в произведении факторов по опытам. Для опытов с первого по четвертый это произведение х1 х2 х3= +1, а с пятого по восьмой опыты х1 х2 х3= -1. Каждая из полуреплик представляет дробный факторный эксперимент.

Слайд 53





Пример: полуреплика с первого по четвёртый опыт: 
Пример: полуреплика с первого по четвёртый опыт: 
Полуреплика обозначается условно в виде
Описание слайда:
Пример: полуреплика с первого по четвёртый опыт: Пример: полуреплика с первого по четвёртый опыт: Полуреплика обозначается условно в виде

Слайд 54





Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент.
Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент.
При постановке эксперимента могут быть примеры от ½  до 1/16 реплик.
Описание слайда:
Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент. Объединение двух полуреплик в одной матрице представляет полный факторный эксперимент. При постановке эксперимента могут быть примеры от ½ до 1/16 реплик.

Слайд 55





При построении полуреплики         существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 поэтому есть только две полуреплики. Соотношения х3= +х1х2, х3= -х1х2 называются генерирующими соотношениями. 
Произведение трех факторов для полуреплик могут иметь два значения: 
1) х1х2х3=+1 или 2) х1х2х3=-1 
Символическое обозначение произведения всех факторов, равного (+1) или (-1), называется определяющим контрастом. 


При построении полуреплики         существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 поэтому есть только две полуреплики. Соотношения х3= +х1х2, х3= -х1х2 называются генерирующими соотношениями. 
Произведение трех факторов для полуреплик могут иметь два значения: 
1) х1х2х3=+1 или 2) х1х2х3=-1 
Символическое обозначение произведения всех факторов, равного (+1) или (-1), называется определяющим контрастом.
Описание слайда:
При построении полуреплики существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 поэтому есть только две полуреплики. Соотношения х3= +х1х2, х3= -х1х2 называются генерирующими соотношениями. Произведение трех факторов для полуреплик могут иметь два значения: 1) х1х2х3=+1 или 2) х1х2х3=-1 Символическое обозначение произведения всех факторов, равного (+1) или (-1), называется определяющим контрастом. При построении полуреплики существует всего две возможности приравнять х3: х3= +х1х2 или х3= -х1х2 поэтому есть только две полуреплики. Соотношения х3= +х1х2, х3= -х1х2 называются генерирующими соотношениями. Произведение трех факторов для полуреплик могут иметь два значения: 1) х1х2х3=+1 или 2) х1х2х3=-1 Символическое обозначение произведения всех факторов, равного (+1) или (-1), называется определяющим контрастом.

Слайд 56





При выборе полуреплик         возможно восемь решений:
При выборе полуреплик         возможно восемь решений:
x4=x1x2        3) x4=x2x3             5) x4=x1x3       7) x4=x1x2x3
x4=-x1x2           4) x4=-x2x3            6) x4=-x1x3      8) x4=-x1x2x3
Разрешающая способность этих полуреплик различна. Реплики 1-6 имеют по три фактора в определяющем контрасте, а 7-8 по четыре. 
Реплики 7-8 имеют максимальную разрешающую способность и называются главными. Определяющий контраст находится для главной реплики, умножением правой и левой частей на х4:
x4x4=x1x2x3x4           1=x1x2x3x4
x4x4=-x1x2x3x4       1=-x1x2x3x4
Описание слайда:
При выборе полуреплик возможно восемь решений: При выборе полуреплик возможно восемь решений: x4=x1x2 3) x4=x2x3 5) x4=x1x3 7) x4=x1x2x3 x4=-x1x2 4) x4=-x2x3 6) x4=-x1x3 8) x4=-x1x2x3 Разрешающая способность этих полуреплик различна. Реплики 1-6 имеют по три фактора в определяющем контрасте, а 7-8 по четыре. Реплики 7-8 имеют максимальную разрешающую способность и называются главными. Определяющий контраст находится для главной реплики, умножением правой и левой частей на х4: x4x4=x1x2x3x4 1=x1x2x3x4 x4x4=-x1x2x3x4 1=-x1x2x3x4

Слайд 57





Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных взаимодействий по сравнению с парными или о незначимости парных взаимодействий. 
Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных взаимодействий по сравнению с парными или о незначимости парных взаимодействий. 
При выборе полуреплики для пяти факторов возможны 22 варианта         (16 опытов). 
Реплики x5=x1x2x3x4 и x5=-x1x2x3x4 имеют наибольшую разрешающую способность.
Описание слайда:
Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных взаимодействий по сравнению с парными или о незначимости парных взаимодействий. Разумен выбор главной полуреплики, если имеется достоверная информация о большей значимости тройных взаимодействий по сравнению с парными или о незначимости парных взаимодействий. При выборе полуреплики для пяти факторов возможны 22 варианта (16 опытов). Реплики x5=x1x2x3x4 и x5=-x1x2x3x4 имеют наибольшую разрешающую способность.

Слайд 58





Рассмотрим пример построения матрицы планирования эксперимента. 
Допустим, что выбран вариант 5 с генерирующими соотношениями: x4=x1x3   и
 x5=х1х2х3, а определяющие контрасты равны: 
Рассмотрим пример построения матрицы планирования эксперимента. 
Допустим, что выбран вариант 5 с генерирующими соотношениями: x4=x1x3   и
 x5=х1х2х3, а определяющие контрасты равны: 
                                 1=х4х1х3 
                             1 =х5х1х2х3. 

Пример построения матрицы дробного факторного эксперимента
Описание слайда:
Рассмотрим пример построения матрицы планирования эксперимента. Допустим, что выбран вариант 5 с генерирующими соотношениями: x4=x1x3 и x5=х1х2х3, а определяющие контрасты равны: Рассмотрим пример построения матрицы планирования эксперимента. Допустим, что выбран вариант 5 с генерирующими соотношениями: x4=x1x3 и x5=х1х2х3, а определяющие контрасты равны: 1=х4х1х3 1 =х5х1х2х3. Пример построения матрицы дробного факторного эксперимента

Слайд 59


Термины технологического прогнозирования, слайд №59
Описание слайда:

Слайд 60





Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и минус по свойствам симметрии и ортогональности матрицы. Графу x4 заполняем по генерирующему соотношению: х4 = х1х3. В графе x5 знаки фактора подсчитываем по генерирующему соотношению: х5 = х1х2х3. 

Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и минус по свойствам симметрии и ортогональности матрицы. Графу x4 заполняем по генерирующему соотношению: х4 = х1х3. В графе x5 знаки фактора подсчитываем по генерирующему соотношению: х5 = х1х2х3. 

Матрицы являются табличным планом проведения эксперимента. 
По результатам опытных данных получают уравнение, которое называется математической моделью.
Описание слайда:
Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и минус по свойствам симметрии и ортогональности матрицы. Графу x4 заполняем по генерирующему соотношению: х4 = х1х3. В графе x5 знаки фактора подсчитываем по генерирующему соотношению: х5 = х1х2х3. Графу х1 заполняем произвольно по свойству симметрии. Графы х2 и х3 заполняем подбором знаков плюс и минус по свойствам симметрии и ортогональности матрицы. Графу x4 заполняем по генерирующему соотношению: х4 = х1х3. В графе x5 знаки фактора подсчитываем по генерирующему соотношению: х5 = х1х2х3. Матрицы являются табличным планом проведения эксперимента. По результатам опытных данных получают уравнение, которое называется математической моделью.

Слайд 61





Пусть, например, проведен эксперимент по полуреплике        с генерирующим соотношением х3 = х1х2, то есть с определяющим контрастом х1х2х3=1, и получены значения параметров оптимизации у.
Пусть, например, проведен эксперимент по полуреплике        с генерирующим соотношением х3 = х1х2, то есть с определяющим контрастом х1х2х3=1, и получены значения параметров оптимизации у.
Описание слайда:
Пусть, например, проведен эксперимент по полуреплике с генерирующим соотношением х3 = х1х2, то есть с определяющим контрастом х1х2х3=1, и получены значения параметров оптимизации у. Пусть, например, проведен эксперимент по полуреплике с генерирующим соотношением х3 = х1х2, то есть с определяющим контрастом х1х2х3=1, и получены значения параметров оптимизации у.

Слайд 62





Уравнение регрессии будем искать в виде:
Уравнение регрессии будем искать в виде:
    y=в0+в1x1+в2x2+в3x3
Коэффициент в0 определяется по формуле:
где  N- число опытов; yi –значение параметра оптимизации в эксперименте по опытам.
Описание слайда:
Уравнение регрессии будем искать в виде: Уравнение регрессии будем искать в виде: y=в0+в1x1+в2x2+в3x3 Коэффициент в0 определяется по формуле: где N- число опытов; yi –значение параметра оптимизации в эксперименте по опытам.

Слайд 63





Коэффициенты уравнения в1,в2,в3 определяются по формуле:
Коэффициенты уравнения в1,в2,в3 определяются по формуле:
где j- знаки факторов, j=(+),(-); i- номер опыта , i=1…N
Описание слайда:
Коэффициенты уравнения в1,в2,в3 определяются по формуле: Коэффициенты уравнения в1,в2,в3 определяются по формуле: где j- знаки факторов, j=(+),(-); i- номер опыта , i=1…N

Слайд 64





Подставим в уравнение регрессии полученные значения факторов и получим математическую модель:
Подставим в уравнение регрессии полученные значения факторов и получим математическую модель:
y=9+3x1+2x2+1x3
Проверим точность полученной математической модели. Подставим в кодовых обозначениях значения факторов.
y1=9+3(-1)+2(-1)+1(+1)=5
y2=9+3(-1)+2(+1)+1(-1)=7
y3=9+3(+1)+2(-1)+1(-1)=9
y4=9+3(+1)+2(+1)+1(+1)=15
Описание слайда:
Подставим в уравнение регрессии полученные значения факторов и получим математическую модель: Подставим в уравнение регрессии полученные значения факторов и получим математическую модель: y=9+3x1+2x2+1x3 Проверим точность полученной математической модели. Подставим в кодовых обозначениях значения факторов. y1=9+3(-1)+2(-1)+1(+1)=5 y2=9+3(-1)+2(+1)+1(-1)=7 y3=9+3(+1)+2(-1)+1(-1)=9 y4=9+3(+1)+2(+1)+1(+1)=15

Слайд 65





Полученные расчётные значения по математической модели соответствуют экспериментальным данным.
Полученные расчётные значения по математической модели соответствуют экспериментальным данным.
Такие математические модели называются адекватными.
Описание слайда:
Полученные расчётные значения по математической модели соответствуют экспериментальным данным. Полученные расчётные значения по математической модели соответствуют экспериментальным данным. Такие математические модели называются адекватными.



Похожие презентации
Mypresentation.ru
Загрузить презентацию