🗊Презентация Mathematical Induction

Категория: Математика
Нажмите для полного просмотра!
Mathematical Induction, слайд №1Mathematical Induction, слайд №2Mathematical Induction, слайд №3Mathematical Induction, слайд №4Mathematical Induction, слайд №5Mathematical Induction, слайд №6Mathematical Induction, слайд №7Mathematical Induction, слайд №8Mathematical Induction, слайд №9Mathematical Induction, слайд №10Mathematical Induction, слайд №11Mathematical Induction, слайд №12Mathematical Induction, слайд №13Mathematical Induction, слайд №14Mathematical Induction, слайд №15Mathematical Induction, слайд №16Mathematical Induction, слайд №17Mathematical Induction, слайд №18Mathematical Induction, слайд №19Mathematical Induction, слайд №20Mathematical Induction, слайд №21

Вы можете ознакомиться и скачать презентацию на тему Mathematical Induction. Доклад-сообщение содержит 21 слайдов. Презентации для любого класса можно скачать бесплатно. Если материал и наш сайт презентаций Mypresentation Вам понравились – поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере.

Слайды и текст этой презентации


Слайд 1


Mathematical Induction, слайд №1
Описание слайда:

Слайд 2





Mathematical Induction
Let Sn, n = 1,2,3,… be statements involving positive integer numbers n.
Suppose that
	1. S1 is true. 
	2. If Sk is true, then Sk +1 is also true.
Описание слайда:
Mathematical Induction Let Sn, n = 1,2,3,… be statements involving positive integer numbers n. Suppose that 1. S1 is true. 2. If Sk is true, then Sk +1 is also true.

Слайд 3





Question 1. Let x1 = 1 and  
Question 1. Let x1 = 1 and
Описание слайда:
Question 1. Let x1 = 1 and Question 1. Let x1 = 1 and

Слайд 4


Mathematical Induction, слайд №4
Описание слайда:

Слайд 5


Mathematical Induction, слайд №5
Описание слайда:

Слайд 6


Mathematical Induction, слайд №6
Описание слайда:

Слайд 7


Mathematical Induction, слайд №7
Описание слайда:

Слайд 8





Question 1b. Find the limit of the sequence
Question 1b. Find the limit of the sequence
Описание слайда:
Question 1b. Find the limit of the sequence Question 1b. Find the limit of the sequence

Слайд 9


Mathematical Induction, слайд №9
Описание слайда:

Слайд 10





Question 2b. Find the following limit
Question 2b. Find the following limit
Описание слайда:
Question 2b. Find the following limit Question 2b. Find the following limit

Слайд 11


Mathematical Induction, слайд №11
Описание слайда:

Слайд 12





Question 3. Find the following limit
Question 3. Find the following limit
Описание слайда:
Question 3. Find the following limit Question 3. Find the following limit

Слайд 13


Mathematical Induction, слайд №13
Описание слайда:

Слайд 14





Picture of the Week
Описание слайда:
Picture of the Week

Слайд 15





Question 8. The initial location of a snail is the point S1 = (0,0). 
Question 8. The initial location of a snail is the point S1 = (0,0). 
The first 3 turning points, keeping the snail confined inside a unit square, are given by S2 = (½, 1), S3 = (1, ½), and S4 = (½, 0). 
After that the snail always heads towards the midpoint of the next path segment that it sees, without crossing its own path.
That is, the coordinates (xn, yn) of the turning points Sn are given by
Описание слайда:
Question 8. The initial location of a snail is the point S1 = (0,0). Question 8. The initial location of a snail is the point S1 = (0,0). The first 3 turning points, keeping the snail confined inside a unit square, are given by S2 = (½, 1), S3 = (1, ½), and S4 = (½, 0). After that the snail always heads towards the midpoint of the next path segment that it sees, without crossing its own path. That is, the coordinates (xn, yn) of the turning points Sn are given by

Слайд 16





a) Show that xn+3 + xn+2  +  xn+1 + ½ xn = 2, 
a) Show that xn+3 + xn+2  +  xn+1 + ½ xn = 2, 
	and find a similar relationship for the y-coordinates.
b) Find the x and y coordinates of the limiting point 	of the snail path.
c) Repeat parts a) and b) for a snail confined inside an isosceles triangle.
The initial location of the snail is S1 = (0,0). 
The first 2 turning points are S2 = (¾, ½) and S3 = (½, 0).
Описание слайда:
a) Show that xn+3 + xn+2 + xn+1 + ½ xn = 2, a) Show that xn+3 + xn+2 + xn+1 + ½ xn = 2, and find a similar relationship for the y-coordinates. b) Find the x and y coordinates of the limiting point of the snail path. c) Repeat parts a) and b) for a snail confined inside an isosceles triangle. The initial location of the snail is S1 = (0,0). The first 2 turning points are S2 = (¾, ½) and S3 = (½, 0).

Слайд 17


Mathematical Induction, слайд №17
Описание слайда:

Слайд 18


Mathematical Induction, слайд №18
Описание слайда:

Слайд 19


Mathematical Induction, слайд №19
Описание слайда:

Слайд 20


Mathematical Induction, слайд №20
Описание слайда:

Слайд 21


Mathematical Induction, слайд №21
Описание слайда:



Похожие презентации
Mypresentation.ru
Загрузить презентацию